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Chapter 1

Introduction

1.1 Solids and fluids as continuous media

All matter is inherently discontinuous, as it is comprised of distinct building blocks, the

molecules. Each molecule consists of a finite number of atoms, which in turn consist of finite

numbers of nuclei and electrons.

Many important physical phenomena involve matter in large length and time scales.

This is generally the case when matter is considered at length scales much larger than

the characteristic length of the atomic spacings and at time scales much larger than the

characteristic times of atomic bond vibrations. The preceding characteristic lengths and

times can vary considerably depending on the state of the matter (e.g., temperature, precise

composition, deformation). However, one may broadly estimate such characteristic lengths

and times to be of the order of up to a few angstroms (1 Å=10−10 m) and a few femtoseconds

(1 fsec=10−15 sec), respectively. As long as the physical problems of interest occur at length

and time scales of several orders of magnitude higher than those noted previously, it is

possible to consider matter as a continuous medium, namely to effectively ignore its discrete

nature without introducing any remotely significant errors.

A continuous medium may be conceptually defined as a finite amount of matter whose

physical properties are independent of its actual size or the time over which they are mea-

sured. As a thought experiment, one may choose to perpetually dissect a continuous medium

into smaller pieces. No matter how small it gets, its physical properties remain unaltered.

Mathematical theories developed for continuous media (or “continua”) are frequently referred

to as “phenomenological”, in the sense that they capture the observed physical response

1



2 Introduction

without directly accounting for the discrete structure of matter.

Solids and fluids (including both liquids and gases) can be accurately viewed as continuous

media in many occasions. Continuum mechanics is concerned with the response of solids

and fluids under external loading precisely when they can be viewed as continuous media.

1.2 History of continuum mechanics

Continuum mechanics is a modern discipline that unifies solid and fluid mechanics, two of the

oldest and most widely examined disciplines in applied science. It draws on classical scientific

developments that go at least as far back as the Hellenistic-era work of Archimedes1 on the

law of the lever and on hydrostatics. It is stimulated by the imagination and creativity of L.

da Vinci2 and propelled by the rigid-body gravitational motion experiments of Galileo3. It

is mathematically founded on the laws of motion put forth by I. Newton4 in his monumental

1687 work titled Philosophiae Naturalis Principia Mathematica (Mathematical Principles of

Natural Philosophy), which is reasonably considered the first axiomatic treatise on mechan-

ics. These laws are substantially extended and set on firmer theoretical ground by L. Euler5

and further developed and refined by A.-L. Cauchy6, who, among other accomplishments, is

credited with introducing the concepts of strain and stress.

Figure 1.1. From left to right: Portraits of Archimedes, da Vinci, Galileo, Newton, Euler and

Cauchy

Continuum mechanics as practiced and taught today emerged largely in the latter half

of the 20th century. This “renaissance” period can be attributed to several factors, such

1Archimedes of Syracuse (287–212 BC) was a Greek mathematician and engineer.
2Leonardo da Vinci (1452–1519) was an Italian painter, architect, scientist and engineer.
3Galileo Galilei (1564–1642) was an Italian scientist.
4Sir Isaac Newton (1643–1727) was an English physicist and mathematician.
5Leonhard Euler (1707–1783) was a Swiss mathematician and physicist.
6Baron Augustin-Louis Cauchy (1789–1857) was a French mathematician.

ME185



History of continuum mechanics 3

as the flourishing of relevant mathematics disciplines (particularly linear algebra, partial

differential equations and differential geometry), the advances in materials and mechani-

cal systems technologies, and the increasing availability (especially since the late 1960s) of

high-performance computers. A wave of gifted modern-day mechanicians contributed to the

rebirth and consolidation of classical mechanics into this new discipline of continuum me-

chanics, which emphasizes generality, rigor and abstraction, yet derives its essential features

from the physics of material behavior.

ME185



Chapter 2

Mathematical Preliminaries

A brief, self-contained exposition of relevant mathematical concepts is provided in this chap-

ter by way of background to the ensuing developments.

2.1 Elements of set theory

A set X is a collection of objects referred to as elements. A set can be defined either by

the properties of its elements or by merely identifying all elements. For example, one may

define X = {1, 2, 3, 4, 5} or, equivalently, X = {all integers greater than 0 and less than 6}.
If x is an element of the set X , one writes x ∈ X . If not, one writes x /∈ X . Some sets of

particular interest in the remainder of these notes are N = {all positive integer numbers},
Z = {all integer numbers}, and R = {all real numbers}.

Let X , Y be two sets. The set X is a subset of the set Y (denoted X ⊆ Y or Y ⊇ X)

if every element of X is also an element of Y . The set X is a proper subset of the set Y

(denoted X ⊂ Y or Y ⊃ X) if every element of X is also an element of Y , but there exists

at least one element of Y that does not belong to X .

The union of sets X and Y (denoted X ∪ Y ) is the set which is comprised of all elements

of both sets. The intersection of sets X and Y (denoted X ∩ Y ) is a set which includes

only the elements common to the two sets. The empty set (denoted ∅) is a set that contains

no elements and is contained in every set, therefore X ∪ ∅ = X . Also, the (set-theoretic)

difference of a set Y from another set X (denoted X\Y ) consists of all elements in X which

do not belong to Y .

4



Vector spaces 5

The Cartesian product X × Y of sets X and Y is a set defined as

X × Y =
{
(x, y) such that x ∈ X, y ∈ Y

}
. (2.1)

Note that the pair (x, y) in the preceding equation is ordered, that is, the element (x, y) is, in

general, not the same as the element (y, x). The notation X2, X3, . . ., is used to respectively

denote the Cartesian products X ×X , X ×X ×X , . . ..

Example 2.1.1: The n-dimensional real coordinate set
Define the set Rn as

R
n = R× R . . .× R

︸ ︷︷ ︸

ntimes

,

where n ∈ N. This is the set of the n-dimensional real coordinates. The two-dimensional set R2 and
the three-dimensional set R3 will be used widely in these notes.

2.2 Vector spaces

Consider a set V whose members (typically called “points”) can be scalars, vectors or func-

tions, visualized in Figure 2.1. Assume that V is endowed with an addition operation (+)

and a scalar multiplication operation (·), which do not necessarily coincide with the classical

addition and multiplication for real numbers.

A "point" that
belongs to 

V
V

Figure 2.1. Schematic depiction of a set

A linear (or vector) space {V,+;R, ·} is defined by the following properties for any u,v,w ∈
V and α, β ∈ R:

(i) α · u+ β · v ∈ V (closure),

(ii) (u+ v) +w = u+ (v +w) (associativity with respect to + ),

ME185



6 Mathematical preliminaries

(iii) ∃ 0 ∈ V | u+ 0 = u (existence of null element),

(iv) ∃ − u ∈ V | u+ (−u) = 0 (existence of negative element),

(v) u+ v = v + u (commutativity),

(vi) (αβ) · u = α · (β · u) (associativity with respect to ·),

(vii) (α + β) · u = α · u+ β · u (distributivity with respect to R),

(viii) α · (u+ v) = α · u+ α · v (distributivity with respect to V),

(ix) 1 · u = u (existence of identity).

Example 2.2.1: Linearity of spaces

(a) V = P2 =
{
all second degree polynomials ax2 + bx+ c

}
with the standard polynomial addi-

tion and scalar multiplication.

It can be trivially verified that {P2,+;R, ·} is a linear function space. P2 is also “equivalent”
to an ordered triad (a, b, c) ∈ R

3.

(b) V = Mm,n(R), where Mm,n(R) is the set of all m × n matrices whose elements are real
numbers. This set is a linear space with the usual matrix addition and scalar multiplication
operations.

(c) Define V =
{
(x, y) ∈ R

2 | x2 + y2 = 1
}
with the standard addition and scalar multiplication

for vectors. Notice that given u with coordinates (x1, y1) and v with coordinates (x2, y2) as

x

y

u

v

1

u+ v

Figure 2.2. Example of a set that does not form a linear space

in Figure 2.2, property (i) is violated, since, in general, for α = β = 1, u+ v has coordinates
(x1 + x2 , y1 + y2) and (x1 + x2)

2 + (y1 + y2)
2 6= 1. Thus, {V,+;R, ·} is not a linear space.
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Consider a linear space {V,+;R, ·} and a subset U of V. Then U forms a linear subspace

of V with respect to the same operations (+) and (·), if, for any u,v ∈ U and α, β,∈ R,

α · u + β · v ∈ U ,

that is, closure is maintained within U .

Example 2.2.2: Subspace of a linear space
Define the set Pn of all algebraic polynomials of degree smaller or equal to n > 2 and consider the
linear space {Pn,+;R, ·} with the usual polynomial addition and scalar multiplication. Then, P2 is
a linear subspace of {Pn,+;R, ·}.

To simplify the notation, in the remainder of these notes the symbol “·” used in scalar

multiplication will be omitted.

Let v1,v2, . . . ,vp be elements of the vector space {V,+;R, ·} and assume that

α1v1 + α2v2 + . . .+ αpvp = 0 ⇔ α1 = α2 = ... = αp = 0 . (2.2)

Then, {v1,v2, . . . ,vp} is termed a linearly independent set in V. The vector space {V,+;R, ·}
is infinite-dimensional if, given any n ∈ N, it contains at least one linearly independent set

with n + 1 elements. If the above statement is not true, then there is an n ∈ N, such that

all linearly independent sets contain at most n elements. In this case, {V,+;R, ·} is a finite

dimensional vector space (specifically, n-dimensional).

A basis of an n-dimensional vector space {V,+;R, ·} is defined as any set of n linearly

independent vectors. If {g1, g2, . . . , gn} form a basis in {V,+;R, ·}, then given any non-zero

v ∈ V,

α1g1 + α2g2 + . . .+ αngn + βv = 0 ⇔ not all α1, . . . , αn, β equal zero . (2.3)

Specifically, β 6= 0 because otherwise there would be at least one non-zero αi, i = 1, . . . , n,

which would have implied that {g1, g2, . . . , gn} are not linearly independent.

Thus, the non-zero vector v can be expressed as

v = −α1

β
g1 −

α2

β
g2 − . . .− αn

β
gn , (2.4)

which shows that any vector v ∈ V can be written as a linear combination of the basis

{g1, g2, . . . , gn}. Moreover, the above representation of v is unique. Indeed, if, alternatively,

v = γ1g1 + γ2g2 + . . .+ γngn , (2.5)
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then, upon subtracting the preceding two equations from one another, it follows that

0 =

(

γ1 +
α1

β

)

g1 +

(

γ2 +
α2

β

)

g2 + . . .+

(

γn +
αn

β

)

gn , (2.6)

which implies that γi = −αi

β
, i = 1, 2, . . . , n, since {g1, g2, . . . , gn} are assumed to be linearly

independent.

Of all the vector spaces, attention will be focused here on the particular class of Euclidean

vector spaces in which a vector multiplication operation (·) is defined, such that for any

u,v,w ∈ V and α ∈ R,

(x) u · v = v · u (commutativity with respect to ·),

(xi) u · (v +w) = u · v + u ·w (distributivity with respect to +),

(xii) (αu) · v = u · (αv) = α(u · v) (associativity with respect to ·)

(xiii) u · u ≥ 0 and u · u = 0 ⇔ u = 0.

This vector operation is referred to as the dot product. An n-dimensional vector space

obeying the above additional rules is referred to as a Euclidean vector space and is de-

noted En.

Example 2.2.3: Dot product between vectors
The standard dot product between vectors in Rn satisfies the above properties.

The dot product provides a natural means for defining the magnitude of a vector as

|u| = (u · u)1/2 . (2.7)

Two vectors u,v ∈ En are orthogonal if u · v = 0. A set of vectors {u1,u2, . . .uk} is

called orthonormal if, for all i, j = 1, 2, . . . , k,

ui · uj = δij =

{

0 if i 6= j

1 if i = j
, (2.8)

where δij is called the Kronecker1 delta symbol.

1Leopold Kronecker (1823–1891) was a German mathematician.
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Points, vectors and tensors in the Euclidean 3-space 9

Every orthonormal set {e1, e2, . . . , ek}, k ≤ n, in En is linearly independent. This is

because, if

α1e1 + α2e2 + . . . + αkek = 0 , (2.9)

then, upon taking the dot product of the above equation with any ei, i = 1, 2, . . . , k, and

invoking the orthonormality of {e1, e2, . . . , ek},

α1(e1 · ei) + α2(e2 · ei) + . . .+ αk(ek · ei) = αi = 0 . (2.10)

It is always possible to construct an orthonormal basis in En, although the process is not

described here. Of particular importance to the forthcoming developments is the observation

that any vector v ∈ En can be uniquely resolved on such an orthonormal basis {e1, e2, . . . , en}
as

v = v1e1 + v2e2 + . . .+ vnen =
n∑

i=1

viei , (2.11)

where vi = v · ei. In this case, vi denotes the i-th Cartesian component of v relative to the

orthonormal basis {e1, e2, . . . , en}.

2.3 Points, vectors and tensors in the Euclidean 3-

space

Consider the Euclidean space E3 (the Euclidean 3-space) with an orthonormal basis {e1, e2, e3}.
As argued in the previous section, a typical vector v ∈ E3 can be written as

v =
3∑

i=1

viei , vi = v · ei . (2.12)

Next, consider points x, y in the Euclidean point space E3, which is the set of all points in

x

yx

y

v

O

Figure 2.3. Points and associated vectors in three dimensions

the ambient three-dimensional space, when taken to be devoid of the mathematical structure
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10 Mathematical preliminaries

of vector spaces. Also, consider an arbitrary, but fixed, origin (or reference point) O in the

same space. It is now possible to define vectors x,y ∈ E3, which originate at O and end

at points x and y, respectively. In this way, one makes a unique association (to within

the specification of O) between points in E3 and vectors in E3. Further, it is possible to

define a measure d(x,y) of distance between x and y, by way of the magnitude of the vector

v = y − x, namely

d(x,y) = |x− y| = [(x− y) · (x− y)]1/2 . (2.13)

Given any point x ∈ E3 , one may identify the neighborhood Nr(x) of x with radius

r > 0 as the set of points y for which d(x,y) < r, or, in mathematical notation, Nr(x) =

{y ∈ E3 d(x,y) < r}, see Figure 2.4. Then, a subset P of E3 is termed open if, for each point

x ∈ P, there exists a neighborhood Nr(x) which is fully contained in P. The complement

Pc of an open set P (defined as the set of all points in E3 that do not belong to P) is, by

definition, a closed set. The closure of a set P, denoted P , is defined as the smallest closed

set that contains P.

E3

x

Nr(x)

1

Figure 2.4. The neighborhood Nr(x) of a point x in E3.

Example 2.3.1: Open and closed sets in E1

Consider the Euclidean space E1 consisting of all real numbers, equipped with the usual measure of
distance between points x and y, that is, the absolute value ‖y − x‖.

(a) The set
{
x ∈ E1, 0 < x < 1

}
= (0, 1) is open.

(b) The set
{
x ∈ E1, 0 ≤ x ≤ 1

}
= [0, 1] is closed.

(c) The set
{
x ∈ E1, 0 ≤ x < 1

}
= [0, 1) is neither open nor closed.

(d) The set E1 is both open and closed.

In E3, one may also define the cross product of two vectors as an operation with the

properties that for any vectors u, v and w, and any scalar α,
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(a) u× v = −v × u ,

(b) (u×v)·w = (v×w)·u = (w×u)·v, or, equivalently [u,v,w] = [v,w,u] = [w,u,v],

where [u,v,w] = (u× v) ·w is the scalar triple product of vectors u, v, and w,

(c) |u× v| = |u||v| sin θ , cos θ =
u · v

(u · u)1/2(v · v)1/2 , 0 ≤ θ ≤ π.

Appealing to either property (a) or (c), it is readily concluded that u×u = 0. Likewise,

properties (a) and (b) can be used to deduce that (u× v) ·u = (u× v) · v = 0, namely that

the vector u × v is orthogonal to both u and v, hence is normal to the plane formed by u

and v.

With reference to property (b) above, an orthonormal basis {e1, e2, e3} is right-hand if

[e1, e2, e3] = 1. This, in turn, necessarily implies that

e1 × e2 = e3 , e2 × e3 = e1 , e3 × e1 = e2 . (2.14)

These relations, together with the conditions

e1 × e1 = e2 × e2 = e3 × e3 = 0 (2.15)

and

e2 × e1 = −e3 , e3 × e2 = −e1 , e1 × e3 = −e2 , (2.16)

which are directly implied by property (a), can be expressed compactly as

ei × ej =
3∑

k=1

ǫijkek , (2.17)

where i, j = 1, 2, 3 and ǫijk is the permutation symbol (or Levi-Civita2 symbol) defined as

ǫijk =







1 if (i, j, k) = (1,2,3), (2,3,1), or (3,1,2)

−1 if (i, j, k) = (2,1,3), (3,2,1), or (1,3,2)

0 otherwise

. (2.18)

With the aid of (2.17) it follows that

u×v =

(
3∑

i=1

uiei

)

×
(

3∑

j=1

vjej

)

=

3∑

i=1

3∑

j=1

uivjei×ej =

3∑

i=1

3∑

j=1

3∑

k=1

ǫijkuivjek . (2.19)

2Tullio Levi-Civita (1873–1941) was an Italian mathematician.

ME185



12 Mathematical preliminaries

Let U , V be two sets and define a mapping f from U to V as a rule that assigns to each

point u ∈ U a unique point v = f(u) ∈ V, see Figure 2.5. The usual notation for a mapping

is: f : U → V , u → v = f(u) ∈ V. With reference to the above setting, U is called the

domain of f , whereas V is termed the range of f .

U V

f

u v

Figure 2.5. Mapping between two sets

Given mappings f : U → V , u → v = f(u) and g : V → W , v → w = g(v), the

composition mapping g ◦ f is defined as g ◦ f : U → W , u → w = g(f(u)), as in Figure 2.6.

U V W

f g

g ◦ f

u
v

w

Figure 2.6. Composition mapping g ◦ f

A mapping T : E3 → E3 is called linear if it satisfies the property

T(αu+ βv) = αT(u) + βT(v) , (2.20)

for all u,v ∈ E3 and α, β ∈ R. A linear mapping T : E3 → E3 is also referred to as a tensor.

Example 2.3.2: Examples of tensors

(a) T : E3 → E3, T(v) = v for all v ∈ E3. This is called the identity tensor, and is
typically denoted T = I.
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(b) T : E3 → E3, T(v) = 0 for all v ∈ E3. This is called the zero tensor, and is typically
denoted T = 0.

The tensor product between two vectors v and w in E3 is denoted v ⊗ w and defined

according to the relation

(v ⊗w)u = (w · u)v , (2.21)

for any vector u ∈ E3. This implies that, under the action of the tensor product v⊗w, the

vector u is mapped to the vector (w · u)v. It can be easily verified that v ⊗w is a tensor

according to the definition in (2.20), see Exercise 2-10. Using the Cartesian components of

vectors, one may express the tensor product of v and w as

v ⊗w = (

3∑

i=1

viei)⊗ (

3∑

j=1

wjej) =

3∑

i=1

3∑

j=1

viwjei ⊗ ej . (2.22)

It will be shown shortly that the set of nine tensor products {ei ⊗ ej , i, j = 1, 2, 3}, form a

basis for the space L(E3, E3) of all tensors on E3.

Before proceeding further with the discussion of tensors, it is expedient to introduce a

summation convention, which will greatly simplify the component representation of both

vectorial and tensorial quantities and their associated algebra and calculus. This convention

originates with A. Einstein3, who employed it first in his work on the theory of relativity.

The summation convention has three rules, which, when adapted to the special case of E3,

are as follows:

Rule 1. If an index appears twice in a single component term or product expression, the

summation sign is omitted and summation is automatically assumed from value 1 to 3.

Such an index is referred to as dummy.

Rule 2. An index which appears once in a single component term or product expression is

not summed and is assumed to attain a value 1, 2, or 3. Such an index is referred to

as free.

Rule 3. No index can appear more than twice in a single component term or product

expression.

3Albert Einstein (1879–1955) was a German-born American physicist.
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Example 2.3.3: Summation convention

(a) The vector representation u =

3∑

i=1

uiei is replaced by u = uiei, where i is a dummy

index.

(b) The dot product between two vectors u and v, defined as u ·v =
3∑

i=1

uivi is equivalently

written as uivi, where i is a dummy index.

(c) The tensor product u ⊗ v =

3∑

i=1

3∑

j=1

uivjei ⊗ ej is equivalently written as u ⊗ v =

uivjei ⊗ ej and involves the summation of nine terms. Here, both i and j are dummy
indices.

(d) The cross product u × v =

3∑

i=1

3∑

j=1

3∑

k=1

ǫijkuivjek is equivalently written as u × v =

ǫijkuivjek and involves the summation of twenty-seven terms (although not all of them
are non-zero).

(e) The term uivj is a single term with two free indices i and j. Here, i, j, and k are dummy
indices.

(f) It is easy to see that δijui = δ1ju1+δ2ju2+δ3ju3 = uj. This index substitution property
is frequently used in component manipulations.

(g) A similar index substitution property applies in the case of a two-index quantity, namely
δijaik = δ1ja1k + δ2ja2k + δ3ja3k = ajk.

(h) The term aijbjkcj violates the third rule of the summation convention, since index j
appears thrice in a product.

(i) The equality aij = bik is meaningless because there is inconsistency of free indices
between the left- and right-hand sides.
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(j) The scalar triple product [u,v,w] can be expressed in component form as

(u× v) ·w =

(
3∑

i=1

3∑

j=1

3∑

k=1

ǫijkuivjek

)

·
(

3∑

l=1

wlel

)

=

3∑

i=1

3∑

j=1

3∑

k=1

3∑

l=1

ǫijkuivjwl(ek · el)

=
3∑

i=1

3∑

j=1

3∑

k=1

3∑

l=1

ǫijkuivjwlδkl

=

3∑

i=1

3∑

j=1

3∑

k=1

ǫijkuivjwk ,

where use is made of (2.8) and the substitution property of part (f). When enforcing the
summation convention, the scalar triple product is equivalently written as ǫijkuivjwk.

With the summation convention in place, take a tensor T ∈ L(E3, E3) and define its

components Tij , such that

Tej = Tijei . (2.23)

It follows that, for any v ∈ E3,

(T− Tijei ⊗ ej)v = (T− Tijei ⊗ ej)vkek

= Tekvk − Tijvk(ei ⊗ ej)ek

= Tikeivk − Tijvk(ej · ek)ei
= Tikvkei − Tijvkδjkei

= Tikvkei − Tikvkei

= 0 , (2.24)

where use is made of (2.21), (2.23), and the substitution property of the Kronecker delta

function. Since v is arbitrary, it follows that

T = Tijei ⊗ ej . (2.25)

This derivation demonstrates that any tensor T can be written as a linear combination of

the nine tensor product terms {ei ⊗ ej , i, j = 1, 2, 3}. Therefore, the latter terms form a

basis for the linear space of tensors L(E3, E3). The components of the tensor T relative to
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{ei ⊗ ej , i, j = 1, 2, 3} can be put in matrix form as

[Tij ] =






T11 T12 T13

T21 T22 T23

T31 T32 T33




 . (2.26)

The preceding derivation also reveals that, when using components,

Tv = Tijvjei . (2.27)

This means that the component representation of Tv relative to a given basis amounts to

the multiplication of the 3×3 matrix [Tij] by the 3×1 array [vj ] comprising the components

of the vector v.

It is important to stress here that tensors are not merely matrices, just as vectors are

not just one-dimensional arrays. Tensors are linear mappings in E3, which are represented

by components relative to a given basis. Therefore, the components of a tensor in a matrix

do not define the tensor, but rather they represent it on a given basis.

The transpose TT of a tensor T is defined by the property

u ·Tv = v ·TTu , (2.28)

for any vectors u,v ∈ E3. Using components, this implies that

uiTijvj = viAijuj = vjAjiui , (2.29)

where Aij are the components of TT . It follows from (2.29) that

ui(Tij − Aji)vj = 0 . (2.30)

Since ui and vj are arbitrary, this implies that Aij = Tji, hence the transpose of T can be

written as

TT = Tjiei ⊗ ej = Tijej ⊗ ei . (2.31)

A tensor T is symmetric if TT = T or, when both T and TT are resolved on the same

basis, Tji = Tij . This means that a symmetric tensor has six independent components.

Likewise, a tensor T is skew-symmetric if TT = −T or, again, upon resolving both on the

same basis, Tji = −Tij . Note that, in this case, T11 = T22 = T33 = 0 and the skew-symmetric
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tensor has only three independent components. This suggests that there exists a one-to-

one correspondence between skew-symmetric tensors and vectors in E3. To establish this

correspondence, consider a skew-symmetric tensor W and observe that

W =
1

2
(W −WT ) . (2.32)

Therefore, when W operates on any vector z ∈ E3,

Wz =
1

2
Wij(ei ⊗ ej − ej ⊗ ei)z

=
1

2
Wij[(z · ej)ei − (z · ei)ej] . (2.33)

Recalling the identity u × (v ×w) = (u ·w)v − (u · v)w (see Exercise 2-8), the preceding

equation can be rewritten as

Wz =
1

2
Wij [z× (ei × ej)]

= − 1

2
Wij[(ei × ej)× z]

=
1

2
Wji[(ei × ej)× z]

=

[
1

2
Wjiei × ej

]

× z

= w × z , (2.34)

where the vector w is defined as

w =
1

2
Wjiei × ej (2.35)

and is called the axial vector of the skew-symmetric tensor W. Using components, one may

write W in terms of w and vice-versa. Specifically, starting from (2.35),

w = wkek =
1

2
Wjiei × ej =

1

2
Wjiǫijkek , (2.36)

hence, in component form,

wk =
1

2
ǫijkWji (2.37)

or, using matrices,

[wk] =
1

2






W32 −W23

W13 −W31

W21 −W12




 . (2.38)
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Conversely, starting from (2.34),

Wijzjei = ǫijkwjzkei = ǫikjwkzjei , (2.39)

so that, in component form,

Wij = ǫikjwk = ǫjikwk (2.40)

or, again, using matrices,

[Wij ] =






0 −w3 w2

w3 0 −w1

−w2 w1 0




 . (2.41)

A tensor T is positive-definite if v ·Tv ≥ 0 for all vectors v ∈ E3 and v ·Tv = 0 if, and

only if, v = 0. It is easy to show that positive-definiteness of a tensor T is equivalent to

positive-definiteness of the matrix [Tij ] of its components relative to any basis.

Given tensors T,S ∈ L (E3, E3), the tensor multiplication TS : L(E3, E3)×L(E3, E3) 7→
L(E3, E3) is defined according to

(TS)v = T(Sv) , (2.42)

for any v ∈ E3. In component form, this implies that

(TS)v = T(Sv) = T[(Sijei ⊗ ej)(vkek)]

= T[Sijvk(ej · ek)ei]
= T(Sijvkδjkei)

= T(Sijvjei)

= TkiSijvjek

= (TkiSijek ⊗ ej)(vlel) , (2.43)

where, again, use is made of (2.21), (2.23), and the substitution property of the Kronecker

delta function. Equation (2.43) readily leads to

TS = TkiSijek ⊗ ej . (2.44)

This, in turn, shows that the matrix of components of the tensor TS is obtained by the

multiplication of the 3 × 3 matrix of components [Tki] of tensor T by the 3 × 3 matrix of

components [Sij ] of tensor S.
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The trace tr(u⊗ v) of the tensor product of two vectors u⊗ v is defined as

tr(u⊗ v) = u · v , (2.45)

hence, the trace trT : L(E3, E3) 7→ R of a tensor T is deduced from equation (2.45) as

trT = tr(Tijei ⊗ ej) = Tijei · ej = Tijδij = Tii . (2.46)

This means that the trace of a tensor equals the trace of the matrix of its components.

The eigenvalues of a tensor are defined as the eigenvalues of the matrix of its components

relative to any orthonormal basis. Hence, the eigenvalues of a tensor T are obtained from

the solution of the cubic polynomial equation

det(T− λI) = −λ3 + ITλ
2 − IITλ+ IIIT = 0 , (2.47)

where the principal invariants of T are defined by the scalar triple-product relations

[u,v,w]IT = [Tu,v,w] + [u,Tv,w] + [u,v,Tw] ,

[u,v,w]IIT = [Tu,Tv,w] + [u,Tv,Tw] + [Tu,v,Tw] , (2.48)

[u,v,w]IIIT = [Tu,Tv,Tw] ,

for any vectors u,v,w ∈ E3. Starting from (2.48), it can be readily established (see Exer-

cise 2-17) that the three principal invariants of T satisfy the relations

IT = trT ,

IIT =
1

2

[(
trT

)2 − trT2
]
, (2.49)

IIIT =
1

6

[(
trT

)3 − 3 trT trT2 + 2 trT3
]

= detT ,

where “det” denotes the determinant of T, which is defined as the determinant of the ma-

trix [Tij ]. It is easy to show (see Exercise 2-18) that the invariants remain unaltered under

a change of orthonormal basis, which justifies their name. It is also easy to show that sym-

metric tensors possess only real eigenvalues, while symmetric positive-definite tensors have

only positive eigenvalues.

The contraction (or inner product) T · S : L(E3, E3)× L(E3, E3) 7→ R of two tensors T

and S is defined as

T · S = tr(TST ) . (2.50)
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Using components,

tr(TST ) = tr(TkiSjiek ⊗ ej) = TkiSjiek · ej = TkiSjiδkj = TkiSki , (2.51)

therefore

T · S = TkiSki . (2.52)

Two tensors T, S are mutually orthogonal if T · S = 0.

Example 2.3.4: Inner product of a symmetric and a skew-symmetric tensor
Assume that S is a symmetric tensor and T is a skew-symmetric tensor. Then, using the definition
(2.50), it follows that

S ·T = SijTij = Sji(−Tji) = −SjiTji = −S ·T ,

which implies that S · T = 0. Hence symmetric and skew-symmetric tensors are always mutually
orthogonal.

A tensor T is invertible if, for any w ∈ E3, the equation

Tv = w (2.53)

can be uniquely solved for v. Then, one writes

v = T−1w , (2.54)

and T−1 is the inverse of T. Employing components, equation (2.53) can be expressed as

Tijvj = wi , (2.55)

which implies that T is invertible if the 3× 3 matrix its components [Tij] is itself invertible.

As is well-known, the latter condition holds true if, and only if, det[Tij ] 6= 0. Clearly, if T−1

exists, then

T−1w − v = 0

= T−1(Tv)− v

= (T−1T)v − v

= (T−1T− I)v . (2.56)

Hence, since v is arbitrary, T−1T = I and, similarly, TT−1 = I.
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Example 2.3.5: The Cayley4-Hamilton5theorem
For any tensor T, the Cayley-Hamilton theorem states that

T3 − ITT
2 + IITT− IIITI = 0 . (2.57)

With reference to (2.47), the above implies that the tensor T satisfies its own characteristic equation.
A proof of this result may be obtained by starting with the identity

det







δim δin δio δip
δjm δjn δjo δjp
δkm δkn δko δkp
δlm δln δlo δlp






TimTjnTko = 0 ,

where i, j, . . . , p = 1, 2, 3. This holds true since at least two rows of the 4× 4 matrix are necessarily
identical (hence, the determinant always vanishes). A systematic, if tedious, expansion of this
determinant in conjunction with (2.49) and the result of Exercise 2-3(h) recovers (2.57).

The Cayley-Hamilton theorem allows any non-negative integer power of a tensorT to be expressed
as a function of I, T, T2 and the three principal invariants of T. If, in addition, the tensor is invertible,
then any integer power may be expressed as a function of any three successive integer powers and
the principal invariants of the tensor.

A tensor T is orthogonal if

TTT = TTT = I . (2.58)

Note that orthogonal tensors are also invertible, since

det (TTT) = detTT detT = (detT)2 = det I = 1 , (2.59)

hence detT = ±1. Therefore (2.58) implies that the inverse of an orthogonal tensor is equal

to its transpose, that is,

TT = T−1 . (2.60)

It can be shown that, for any tensors T,S ∈ L(E3, E3),

(S+T)T = ST +TT , (ST)T = TTST . (2.61)

If, further, the tensors T and S are invertible, then

(ST)−1 = T−1S−1 . (2.62)

4Arthur Cayley (1821–1895) was a British mathematician.
5Sir William Rowan Hamilton (1805–1865) was an Irish physicist and mathematician.
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The notation T−T is often used to denote the inverse-transpose of an invertible tensor T.

Also, T−T is a well-defined quantity, since the transpose of the inverse of a tensor equals the

inverse of the transpose, that is,

T−T = (T−1)T = (TT )−1 . (2.63)

2.4 Vector and tensor calculus

Define real-, vector- and tensor-valued functions of a vector variable x and a real variable t.

The real-valued functions involving x and t are dependent variables are of the form

φ1 : R → R , t → φ = φ1(t)

φ2 : E
3 → R , x → φ = φ2(x) (2.64)

φ3 : E
3 × R → R , (x, t) → φ = φ3(x, t) ,

while the vector- and tensor-valued functions are of the form

v1 : R → E3 , t → v = v1(t)

v2 : E
3 → E3 , x → v = v2(x) (2.65)

v3 : E
3 × R → E3 , (x, t) → v = v3(x, t)

and

T1 : R → L(E3, E3) , t → T = T1(t)

T2 : E
3 → L(E3, E3) , x → T = T2(x) (2.66)

T3 : E
3 × R → L(E3, E3) , (x, t) → T = T3(x, t) ,

respectively.

The gradient of a differentiable real-valued function φ(x) (denoted gradφ(x), ∇φ(x) or
∂φ(x)

∂x
) is a vector-valued function defined by the relation

(
gradφ(x)

)
·w =

[
d

dw
φ(x+ ww)

]

w=0

, (2.67)

ME185



Vector and tensor calculus 23

for any w ∈ E3. Using the chain rule, the right-hand side of equation (2.67) becomes
[
d

dω
φ(x+ ωw)

]

ω=0

=

[
∂φ(x + ωw)

∂(xi + ωwi)

d(xi + ωwi)

dω

]

ω=0

=
∂φ(x)

∂xi
wi . (2.68)

Taking into account (2.67) and (2.68), one may write in component form

gradφ =
∂φ

∂xi
ei . (2.69)

As a differential operator, the gradient of a real-valued function takes the form

grad = ∇ =
∂

∂xi
ei . (2.70)

Example 2.4.1: Gradient of a real-valued function
Consider the real-valued function φ(x) = |x|2 = x · x. Its gradient is

gradφ =
∂

∂x
(x · x) =

∂(xjxj)

∂xi
ei =

(
∂xj

∂xi
xj + xj

∂xj

∂xi

)

ei

= (δijxj + xjδij)ei = 2xiei = 2x .

Alternatively, using directly the definition,

(gradφ) ·w =

[
d

dω
{(x+ ωw) · (x+ ωw)}

]

ω=0

=

[
d

dω
{x · x+ 2ωx ·w + ω2w ·w}

]

ω=0

= [2x ·w + 2ωw ·w]ω=0

= 2x ·w ,

which leads, again, to gradφ = 2x.

The gradient of a differentiable vector-valued function6 v(x) (denoted gradv(x), ∇v(x)

or
∂v(x)

∂x
) is a tensor-valued function defined by the relation

(
gradv(x)

)
w =

[
d

dω
v(x+ ωw)

]

ω=0

, (2.71)

6Technically, real-valued functions have gradients and vector-valued functions have derivatives – how-

ever, the term “gradient” is used quite frequently in continuum mechanics and elsewhere for vector-valued

functions.
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for any w ∈ E3. Again, using chain rule, the right-hand side of equation (2.71) becomes
[
d

dω
v(x+ ωw)

]

ω=0

=

[
∂vi(x + ωw)

∂(xj + ωwj)

d(xj + ωwj)

dw

]

ω=0

ei =
∂vi(x)

∂xj
wjei , (2.72)

hence, appealing to (2.71) and (2.72) one deduces the component representation

gradv =
∂vi
∂xj

ei ⊗ ej . (2.73)

As a differential operator, the gradient of a vector-valued function takes the form

grad = ∇ =
∂

∂xj

⊗ ej . (2.74)

Example 2.4.2: Gradient of a vector-valued function
Consider the vector-valued function v(x) = αx. Its gradient is

gradv =
∂(αx)

∂x
=

∂(αxi)

∂xj
ei ⊗ ej = αδijei ⊗ ej = αei ⊗ ei = αI ,

since (ei ⊗ ei)v = (v · ei)ei = viei = v. Alternatively, using directly the definition,

(gradv)w =

[
d

dw
(v + ww)

]

w=0

= αw , (2.75)

hence gradv = αI.

The divergence of a differentiable vector-valued function v(x) (denoted divv(x) or ∇ ·
v(x)) is a real-valued function defined as

divv(x) = tr
(
gradv(x)

)
, (2.76)

on, using components,

div v = tr

(
∂vi
∂xj

ei ⊗ ej

)

=
∂vi
∂xj

ei · ej =
∂vi
∂xj

δij =
∂vi
∂xi

= vi,i . (2.77)

As a differential operator, the divergence of a vector-valued function is expressed in the form

div = ∇· =
∂

∂xj
· ej . (2.78)
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Example 2.4.3: Divergence of a vector-valued function
Consider again the differentiable vector-valued function v(x) = αx. Its divergence is

div v(x) =
∂(αxi)

∂xi
= α

∂xi

∂xi
= αδii = 3α .

The divergence of a differentiable tensor-valued function T(x) (denoted divT(x) or ∇ ·
T(x)) is a vector-valued function defined by the property that

(
divT(x)

)
· c = div

((
TT (x)

)
c
)

, (2.79)

for any constant vector c ∈ E3.

Using components,

(divT) · c = div(TTc)

= div[(Tijej ⊗ ei)(ckek)]

= div[Tijck(ei · ek)ej]
= div[Tijckδikej]

= div[Tijciej ]

= tr

[
∂(Tijci)

∂xk
ej ⊗ ek

]

=
∂(Tijci)

∂xk
δjk

=
∂(Tijci)

∂xj

=
∂Tij

∂xj

ci

=

(
∂Tij

∂xj

ei

)

· (cjej) , (2.80)

hence,

divT =
∂Tij

∂xj
ei . (2.81)

The divergence operator on a tensor function is expressed as

div = ∇· =
∂

∂xi
ei . (2.82)
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It is important to recognize here that the definitions (2.67), (2.71), (2.76), and (2.79)

are independent of the choice of coordinate system. The respective component represen-

tations (2.69), (2.73), (2.77), and (2.81) are specific to the orthonormal basis {e1, e2, e3}
in E3.

Finally, the curl (or rotor) of a differentiable vector-valued function v(x) (denoted

curlv(x), rotv(x), or ∇× v(x)) is another vector defined by the property

(
curl v(x)

)
· c = div

(
v(x)× c

)
, (2.83)

for any constant vector c ∈ E3. Using again components, this translates to

(curlv) · c = div(v × c)

= div[ǫijkvjckei]

= div[ǫijkvjei]ck

= tr

[

ǫijk
∂vj
∂xl

ei ⊗ el

]

ck

= ǫijkvj,ick

= ǫijkvk,jci

= (ǫijkvk,jei) · (clel) , (2.84)

which implies that

curlv = ǫijkvk,jei . (2.85)

The notation ∇ × v(x) for the curl of a vector-valued function is justified, when using

components, by observing that

curl v =

(
∂

∂xi
ei

)

× (vjej) =
∂vj
∂xi

ei × ej =
∂vj
∂xi

ǫijkek = ǫijk
∂vk
∂xj

ei , (2.86)

as before. Therefore, as a differential operator, the curl may expressed in the form

curl = ∇× =
∂

∂xi
ei × . (2.87)

Example 2.4.4: Curl of a vector-valued function
Consider the vector-valued function v(x) = x2x3e1 + x3x1e2 + x1x2e3. The curl of this
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function is
(
∂v3
∂x2

− ∂v2
∂x3

)

e1 +

(
∂v1
∂x3

− ∂v3
∂x1

)

e2 +

(
∂v2
∂x1

− ∂v1
∂x2

)

e3 = 0 .

2.5 Exercises

2-1. Expand the following equations for an index range of three, namely, i, j = 1, 2, 3:

(a) Aijxj + bi = 0 ,

(b) φ = Cijxixj ,

(c) ψ = TiiSjj .

2-2. Use the summation convention to rewrite the following expressions in concise form:

(a) S11T13 + S12T23 + S13T33 ,

(b) S2
11 + S2

22 + S2
33 + 2S12S21 + 2S23S32 + 2S31S13 .

2-3. Verify the following identities:

(a) δii = 3 ,

(b) δijδij = 3 ,

(c) δijǫijk = 0 ,

(d) ǫijkǫijk = 6 ,

(e) ǫijkǫijm = 2δkm ,

(f) ǫijk = det





δi1 δi2 δi3
δj1 δj2 δj3
δk1 δk2 δk3



 ,

(g) ǫijkǫilm = δjlδkm − δjmδkl (ǫ-δ identity) ,

(h) ǫijkǫlmn = det





δil δim δin
δjl δjm δjn
δkl δkm δkn



 .

2-4. Verify by direct calculation that

detT = ǫijkT1iT2jT3k ,

where Tij denote the components of tensor T. Using this result, deduce the formula

detT =
1

3!
ǫijkǫlmnTilTjmTkn .
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2-5. Given T = 2e1 ⊗ e1 − 3e1 ⊗ e2 + e2 ⊗ e3 +4e3 ⊗ e2, u = e1 +2e3 and v = 3e2, evaluate the
expression φ = Tijuivj.

2-6. (a) Expand and simplify the expression Aijxixj, where i, j = 1, 2, 3 and

(i) Aij is symmetric,

(ii) Aij is skew-symmetric.

(b) Let Aij be symmetric and Bij be skew-symmetric. Show that AijBij = 0.

2-7. Consider the array [Aij ] and define its symmetric part sym [Aij ] such that

symAij =
1

2
(Aij +Aji) ,

and its skew-symmetric part skw [Aij ] such that

skwAij =
1

2
(Aij −Aji) .

(a) Show that the array Aij can be uniquely expressed as the sum of the symmetric and
the skew-symmetric part, that is,

[Aij ] = sym [Aij ] + skw [Aij ] .

(b) Show that tr [Aij ] = tr(sym [Aij ]).

(c) Given arrays [Aij ] and [Bij ], show that

AijBij = symAij symBij + skwAij skwBij .

2-8. Recall that the cross product of two vectors u = uiei and v = vjej in E
3 is a vector w = u×v

with components

w1 = u2v3 − u3v2 , w2 = u3v1 − u1v3 , w3 = u1v2 − u2v1 ,

with reference to a right-hand orthonormal basis {e1, e2, e3}.

(a) Verify that wi = ǫijkujvk.

(b) Show that, for any three vectors u, v and w, the vector triple product u × (v × w)
satisfies

u× (v ×w) = (u ·w)v − (u · v)w .

Hint: Obtain the component form of the above equation and apply the ǫ-δ identity.

(c) For any vector v and unit vector n, show that

v = v · n+ n× (v × n) .

Provide a geometric interpretation of this identity.
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2-9. Show that, for any two vectors a and b in E3,

‖a× b‖2 = ‖a‖2‖b‖2 − (a · b)2 .
This is known as Lagrange’s identity.

2-10. Verify that the tensor product v ⊗w of the vectors v, w in E3 is a linear mapping, that is,

(v ⊗w)(αu1 + βu2) = α(v ⊗w)u1 + β(v ⊗w)u2 ,

for all u1,u2 ∈ E3 and α, β ∈ R.

2-11. Using the definition of the tensor product of two vectors in E3, establish the following prop-
erties of the tensor product operation:

(a) a⊗ (b+ c) = a⊗ b+ a⊗ c ,

(b) (a+ b)⊗ c = a⊗ c+ b⊗ c ,

(c) (αa) ⊗ b = a⊗ (αb) = α(a⊗ b) ,

where a, b and c are arbitrary vectors in E3 and α is an arbitrary real number.

Note: The above properties confirm that the tensor product ⊗ is a bilinear operation on
E3 × E3.

Hint: To prove the identities, operate on each side with an arbitrary vector v.

2-12. Verify the truth of the following formulae:

(a) (a⊗ b)T = b⊗ a ,

(b) T (a⊗ b) = (Ta)⊗ b ,

(c) a⊗ (Tb) = (a⊗ b)TT ,

(d) (a⊗ b)(c⊗ d) = (b · c)a⊗ d ,

where T is an arbitrary tensor in L(E3, E3) and a, b, c and d are arbitrary vectors in E3.

2-13. (a) Let the cross product between a vector v and the tensor product a⊗ b of two vectors
a and b be defined as

v × (a⊗ b) = (v × a)⊗ b .

Use this definition to show that the left cross product v ×T between a vector v and a
tensor T can be expressed in component form as

(v ×T)ij = ǫilkvlTkj .

(b) Let the cross product between the tensor product a ⊗ b of two vectors a and b and
another vector v be defined as

(a⊗ b)× v = a⊗ (b× v) .

Use this definition to show that the right cross product T× v between a tensor T and
a vector v can be expressed in component form as

(T× v)ij = ǫjklTikvl .
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(c) Use the results in parts (a) and (b) to deduce that

TT × v = −(v ×T)T .

2-14. Let Q be an orthogonal tensor in L(E3, E3) and let u and v be arbitrary vectors in E3. Show
that:

(a) Qu ·Qv = u · v ,

(b) (Qu)× (Qv) = (detQ)Q(u× v) .

What do the above identities imply about the orthogonal transformation of the dot product
and cross product of two vectors of E3?

2-15. Let T and S be two tensors in L(E3, E3).

(a) Assume that the scalar equation

T · S = 0

holds for every skew-symmetric tensor S. Deduce that T is necessarily symmetric.

(b) Assume that the scalar equation

T · S = 0

holds for every symmetric tensor T. Deduce that S is necessarily skew-symmetric.

2-16. Let {ei , i = 1, 2, 3} and {ēi , i = 1, 2, 3} be two right-hand orthonormal bases in E3 and
assume that they are related according to

ēi = Aijej ; Aij = ēi · ej ,

where each entry Aij represents the cosine of the angle between ēi and ej , namely Aij =
cos (ēi, ej).

(a) Show that the matrix [Aij ] is orthogonal.

(b) Let a vector v be represented on the two bases as

v = viei = v̄iēi .

Show that v̄i = Aijvj.

(c) Let a tensor T be represented on the two bases as

T = Tijei ⊗ ej = T̄ij ēi ⊗ ēj .

Show that T̄ij = AikTklAjl.

(d) Consider a change of basis where the angles between ēi and ej are tabulated below:
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ē1 ē2 ē3
e1 120o 120o 45o

e2 45o 135o 90o

e3 60o 60o 45o

.

Calculate the entries Aij and verify that the matrix [Aij ] is orthogonal. Also, if v =
2e1 + 3e2 − e3 and T = −2e1 ⊗ e1 +5e1 ⊗ e3 +2e2 ⊗ e3 + e3 ⊗ e3, find the component
representation of v and T on the basis {ēi}.

2-17. Derive the expressions (2.49) for the principal invariants of a tensor T in L(E3, E3) from the
corresponding definitions in (2.48).

2-18. Given an arbitrary tensor T in L(E3, E3), verify that each of its principal invariants attains
the same value regardless of the choice of basis.

2-19. Let a scalar function φ be defined on E3 as

φ = αx1x
2
2x3 + β sin (γx2) ,

where α, β and γ are constant real numbers. Determine the following fields:

(a) v = gradφ ,

(b) div v ,

(c) T = grad v ,

(d) divT ,

(e) curlv .

2-20. Give an example of a non-constant two-dimensional vector field with zero divergence and
zero curl.

2-21. Use indicial notation to verify the following identities:

(a) grad (φv) = φ grad v + v⊗ grad φ ,

(b) grad (v ·w) = (gradv)Tw + (gradw)Tv ,

(c) grad (divv) = div (gradv)T ,

(d) div (v ⊗w) = (grad v)w + (divw)v ,

(e) curl grad φ = 0 ,

(f) div curlv = 0 ,

(g) curl curlv = grad divv − div grad v ,

(h) curl (φv) = φ curlv + gradφ× v ,

(i) div (v ×w) = w · curlv − v · curlw ,

(j) curl (v ×w) = div (v ⊗w −w ⊗ v) ,

where φ is a scalar field and v, w are vector fields in E3.
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Chapter 3

Kinematics of Deformation

3.1 Bodies, configurations and motions

Let a continuum body B be defined as a collection of material particles, which, when consid-

ered together, endow the body with local (pointwise) physical properties that are independent

of its actual size or the time over which they are measured. Also, let a typical such particle

be denoted by P , while an arbitrary subset of B be denoted by S , see Figure 3.1.

S

B

P

Figure 3.1. A body B and its subset S .

Let x be the point in E3 occupied by a particle P of the body B at time t, and let x be

its associated position vector relative to the fixed origin O of an orthonormal basis in the

vector space E3. Then, define by χ̄ : (P, t) ∈ B × R 7→ E3 the motion of B, which is a

mapping, such that

x = χ̄(P, t) = χ̄t(P ) . (3.1)

In the above, χ̄t : B 7→ E3 is called the configuration mapping of B at time t. Given χ̄,

the body B may be mapped to its configuration R = χ̄(B, t) with boundary ∂R at time t.
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Likewise, any part S ⊂ B can be mapped to its configuration P = χ̄t(S , t) with boundary

∂P at time t, see Figure 3.2. Clearly, R and P are point sets in E3. When endowed with the

mathematical structure of E3, the sets R and P are typically thought of as open, which is

tantamount to assuming that they do not contain their respective boundaries ∂R and ∂P.

S

B

P

P
R

∂P
∂Rx

χ̄

Figure 3.2. Mapping of a body B to its configuration at time t.

The configuration mapping χ̄t is assumed to be invertible, which means that any point

x ∈ R can be uniquely associated to a particle P according to

P = χ̄
−1
t (x) . (3.2)

The motion χ̄ of the body is assumed to be twice-differentiable in time. Then, one may

define the velocity and acceleration of any particle P at time t according to

v =
∂χ̄(P, t)

∂t
, a =

∂2
χ̄(P, t)

∂t2
. (3.3)

The mapping χ̄ represents the material description of the body motion. This is because the

domain of χ̄ consists of the totality of material particles in the body, as well as time. This

description, although mathematically proper, is of limited practical use, because there is no

direct quantitative way of tracking particles of the body. For this reason, two alternative

descriptions of the body motion are introduced below.

Of all configurations in time, select one, say R0 = χ̄(B, t0) at a time t = t0, and refer to

it as the reference configuration. The choice of reference configuration is largely arbitrary,1

although in many practical problems it is guided by the need for mathematical simplicity.

Now, denote the point which P occupies at time t0 as X and let this point be associated

with position vector X, namely

X = χ̄(P, t0) = χ̄t0(P ) . (3.4)

1More generally, any configuration that the body is capable of occupying (irrespective of whether it

actually does or not) may serve as a reference configuration.

ME185



34 Kinematics of deformation

Thus, one may exploit the invertibility of χ̄t0 to write

x = χ̄(P, t) = χ̄(χ̄−1
t0
(X), t) = χ(X, t) . (3.5)

The mapping χ : E3 × R 7→ E3, where

x = χ(X, t) = χt(X) (3.6)

represents the referential or Lagrangian description of the body motion. In such a descrip-

tion, it is implicit that a reference configuration is provided. The mapping χt is the placement

of the body relative to its reference configuration, see Figure 3.3. Note that the placement χt

is an invertible mapping. Indeed, appealing to (3.2) and (3.4),

X = χ̄t0(P ) = χ̄t0

(
χ̄

−1
t (x)

)
= χ

−1
t (x) . (3.7)

B

P

RR0

x
X

χ̄t0

χ̄t

χt

Figure 3.3. Mapping of a body B to its reference configuration at time t0 and its current

configuration at time t.

Assume now that the motion of the body B is described relative to the reference config-

uration R0 defined at time t = t0 and let the configuration R of B at time t be termed the

current configuration. Also, let {E1,E2,E3} and {e1, e2, e3} be fixed right-hand orthonormal

bases associated with the reference and current configuration, respectively2. With reference

to the preceding bases, one may write the position vectors X and x corresponding to the

points occupied by the particle P at times t0 and t as

X = XAEA , x = xiei , (3.8)

2It is possible to use the same coordinate system for both configurations. However, such a simplification

would obscure the natural association of physical quantities with a particular configuration.
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respectively. Hence, resolving all relevant vectors to their respective bases, the motion χ

in (3.6) may be expressed using components as

xiei = χi(XAEA, t)ei , (3.9)

or, in pure component form,

xi = χi(XA, t) . (3.10)

The velocity and acceleration vectors, expressed in the referential description, take the

form

v =
∂χ(X, t)

∂t
, a =

∂2
χ(X, t)

∂t2
, (3.11)

respectively. Resolving all vectors in the orthonormal basis {e1, e2, e3}, as mandated by the

coordinate representation of χ in (3.9), leads to

v =
∂χi(XA, t)

∂t
ei , a =

∂2χi(XA, t)

∂t2
ei . (3.12)

Scalar, vector and tensor functions can be alternatively expressed using the spatial or

Eulerian description, where the independent variables are the current position vector x and

time t. Indeed, starting, for example, with a scalar function f = f̌(P, t), one may appeal

to (3.2) to write

f = f̌(P, t) = f̌(χ̄−1
t (x), t) = f̃(x, t) . (3.13)

In analogous fashion, one may take advantage of (3.7) to write

f = f̂(X, t) = f̂(χ−1
t (x), t) = f̃(x, t) . (3.14)

The above two equations may be combined to write

f = f̌(P, t) = f̂(X, t) = f̃(x, t) . (3.15)

Clearly, all three functions in (3.15) describe the same quantity f . However, in the mate-

rial description, one determines f for a given material point P and time t. Similarly, the

arguments in the referential description are the position X occupied by a material point at

some reference time t0 and time t. By contrast, the spatial description uses as arguments

a position x in space and time t, and determines f for the particle that happens to occupy

this position at t.

The preceding analysis shows that any function (not necessarily real-valued) that depends

on position and time can be written equivalently in material, referential or spatial form.
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Focusing specifically on the referential and spatial descriptions, it is easily seen that the

velocity and acceleration vectors can be equivalently expressed as

v = v̂(X, t) = ṽ(x, t) , a = â(X, t) = ã(x, t) , (3.16)

respectively, see Figure 3.4. In component form, one may write

v = v̂i(XA, t)ei = ṽi(xj, t)ei , a = âi(XA, t)ei = ãi(xj , t)ei . (3.17)

(X, t) (x, t)

v̂
ṽ

v

χ

Figure 3.4. Schematic depiction of referential and spatial mappings for the velocity v.

Example 3.1.1: A three-dimensional motion and its time derivatives
Consider a motion χ, such that

χ1 = χ1(XA, t) = X1e
t

χ2 = χ2(XA, t) = X2 + tX3

χ3 = χ3(XA, t) = −tX2 + X3 ,

with reference to fixed orthonormal system {ei}. Note that x = X at time t = 0, that is, the
body occupies the reference configuration at time t = 0.

The inverse mapping χ
−1
t is easily obtained as

X1 = χ−1
t1
(xj) = x1e

−t

X2 = χ−1
t2
(xj) =

x2 − tx3

1 + t2

X3 = χ−1
t3 (xj) =

tx2 + x3

1 + t2
.

The velocity field, written in the referential description has components v̂i(XA, t) =
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∂χi(XA, t)

∂t
, namely

v̂1(XA, t) = X1e
t

v̂2(XA, t) = X3

v̂3(XA, t) = −X2 ,

while in the spatial description has components ṽi(χj , t) given by

ṽ1(χj , t) = (x1e
−t)et = x1

ṽ2(χj , t) =
tx2 + x3

1 + t2

ṽ3(χj , t) = − x2 − tx3

1 + t2
.

The acceleration in the referential description has components âi(XA, t) =
∂2χi(XA, t)

∂t2
,

hence,

â1(XA, t) = X1e
t

â2(XA, t) = 0

â3(XA, t) = 0 ,

while in the spatial description the components ãi(χj, t) are given by

ã1(xj , t) = x1

ã2(xj , t) = 0

ã3(xj , t) = 0 .

Given real-valued function f = f̌(P, t) = f̂(X, t) which is differentiable in time, define

the material time derivative ḟ 3 of f as

ḟ =
∂f̌ (P, t)

∂t
=

∂f̂ (X, t)

∂t
. (3.18)

It is clear from the above definition that the material time derivative of a function is the rate

of change of the function when keeping the material particle (or, equivalently, its referential

position) fixed.

3Other notations frequently used for the material time derivative include d
dt

(used also here on occasion)

and D
Dt

. Alternative terminology to “material time derivative” includes total time derivative, particle time

derivative, and substantial time derivative.
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If, alternatively, f is expressed in spatial form, that is, f = f̃(x, t) and f̃ is differentiable,

then one resorts to the chain rule to express the material time derivative as

ḟ =
∂f̃ (x, t)

∂t
+

∂f̃(x, t)

∂x
· ∂χ(X, t)

∂t

=
∂f̃ (x, t)

∂t
+

∂f̃(x, t)

∂x
· v

=
∂f̃ (x, t)

∂t
+ grad f̃ · v , (3.19)

where use is made of (3.11)1. The first term on the right-hand side of (3.19) is the spatial

time derivative of f and corresponds to the rate of change of f for a fixed point x in

space. The second term is called the convective rate of change of f and is due to the

spatial variation of f and its effect on the material time derivative as the material particle

which occupies the point x at time t is transported (or, convected) from x with velocity v.

Analogous expressions for the material time derivative apply to vector- and tensor-valued

functions.

Example 3.1.2: Material time derivative of the velocity
Consider the velocity v = ṽ(x, t) of a body and write its material time derivative (which
equals, by virtue of (3.11), to the acceleration a) as

v̇ =
∂ṽ(x, t)

∂t
+

∂ṽ(x, t)

∂x

∂χ(X, t)

∂t

=
∂ṽ(x, t)

∂t
+

∂ṽ(x, t)

∂x
v

=
∂ṽ(x, t)

∂t
+ (grad ṽ)v . (3.20)

A volume, surface, or curve which consists of the same material points in all configura-

tions is termed material. Any material surface in three dimensions may be expressed in the

form F (X1, X2, X3) = 0. This is because, by its mathematical definition, it contains the

same material particles at all times, given that its representation in terms of the referential

coordinates is independent of time. On the other hand, a surface described by the equation

F (X1, X2, X3, t) = 0 is generally not material, because the locus of its points contains dif-

ferent material particles at different times. This distinction becomes less apparent when a

surface is defined in spatial form, that is, by an equation f(x1, x2, x3, t) = 0. In this case,

one may employ Lagrange’s4 criterion of materiality, which states that a surface described

4Joseph-Louis Lagrange (1736–1813) was a French-Italian mathematician.
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by the equation f(x1, x2, x3, t) = 0 is material if, and only if, ḟ = 0.

To prove Lagrange’s criterion, assume first that a surface is material. It follows that its

mathematical representation is of the form

f(x1, x2, x3, t) = F (X1, X2, X3) = 0 , (3.21)

hence

ḟ(x1, x2, x3, t) = Ḟ (X1, X2, X3) = 0 . (3.22)

Conversely, if the criterion holds, then

ḟ(x1, x2, x3, t) = Ḟ (X1, X2, X3, t) =
∂F

∂t
(X1, X2, X3, t) = 0 , (3.23)

which implies that F = F (X1, X2, X3), hence the surface is indeed material.

A similar analysis applies for assessing the materiality of curves in E3. Specifically,

a curve is material if it can be defined as the intersection of two material surfaces, say

F (X1, X2, X3) = 0 and G(X1, X2, X3) = 0. Switching to the spatial description and express-

ing these surfaces as

F (X1, X2, X3) = f(x1, x2, x3, t) = 0 (3.24)

and

G(X1, X2, X3) = g(x1, x2, x3, t) = 0 , (3.25)

it follows from Lagrange’s criterion that a curve is material if ḟ = ġ = 0. It is easy

to argue that this is a sufficient, but not a necessary condition for the materiality of a

curve. This is because it is possible for two non-material surfaces to be material along their

intersection.

Example 3.1.3: A material surface
Consider a surface defined by the equation

f(x1, x2, x3, t) = 2x1x3 − x2
2 ,

in a body whose velocity is v = x2e1+x3e2. This is a material surface according to Lagrange’s
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criterion because

ḟ =
∂f

∂t
+

∂f

∂xi

vi

= 2x3x2 − 2x2x3

= 0 .

Some important definitions concerning special motions are introduced next. A rigid-body

motion (or, simply, rigid motion) is one in which the distance between any two material

points remains constant at all times. Denoting X and Y the position vectors of two material

points on the fixed reference configuration and recalling the definition of the distance function

in (2.13), a motion is rigid if, and only if, for any material points with referential positions

X and Y,

d(X,Y) = d(χ(X, t),χ(Y, t)) = d(x,y) , (3.26)

at all t. A motion χ is steady at a point x, if the velocity at that point is independent of

time. If this is the case for all points in space, then v = ṽ(x) and the motion is called steady.

If a motion is not steady, then it is called unsteady. A point x in space where ṽ(x, t) = 0 at

all times is called a stagnation point.

Example 3.1.4: Steady motion
The motion defined in Example 3.1.1 is steady on the x1-axis and has a stagnation point at
x = 0.

Next, consider the motion χ of body B, and fix a particle P , which occupies a point X

in the reference configuration. Subsequently, trace its successive placements as a function of

time by fixing X and consider the one-parameter family of placements

x = χ(X, t) , (X fixed) . (3.27)

The resulting parametric equations (with parameter t) represent in algebraic form the path-

line or particle path of the given particle, see Figure 3.5. Alternatively, one may express the

same particle path in differential form as

dx = v̂(X, t)dt , x(t0) = X , (X fixed) , (3.28)

or, equivalently,

dy = ṽ(y, τ)dτ , y(t) = x , (3.29)
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where τ is a scalar parameter. Equation (3.28) implies that the velocity of the particle is

always tangent to its pathline, as shown in Figure 3.5. Physically, the particle path line

represents the trajectory of the particle as the body undergoes its motion.

X

x v

R0

R0

Figure 3.5. Pathline of a particle which occupies X in the reference configuration.

Now, let v = ṽ(x, t) be the velocity field at a fixed time t. Define the streamline through x

at time t as the space curve that passes through x and is tangent to the velocity field ṽ at

all of its points. Therefore, the streamline is defined in differential form as

dy = ṽ(y, t)dτ , y(τ0) = x , (t fixed) , (3.30)

where τ is a scalar parameter and τ0 some arbitrarily chosen value of τ corresponding to the

point x, see Figure 3.6. Using components, the preceding definition becomes

dy1
ṽ1(yj, t)

=
dy2

ṽ2(yj, t)
=

dy3
ṽ3(yj , t)

= dτ , yi(τ0) = xi , (t fixed) . (3.31)

x
y

ṽ(y, t)
dy

Figure 3.6. Streamline through point x at time t.

The streakline through a point x at time t is defined by the equation

y = χ(χ−1
τ (x), t) , (x, t fixed) , (3.32)

where τ is a scalar parameter. It is easy to argue that the streakline through a point x

at time t is the locus of placements at time t of all particles that have passed or will pass
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through x (indeed, it suffices to observe that χ−1
τ (x) in (3.32) is the referential placement of

a material point that occupies x at time τ). In differential form, the streakline through x at

t can be expressed as

dy = ṽ(y, s)ds , y(τ) = x , s = t , (x, t fixed) , (3.33)

where s is a scalar parameter. Equation (3.33) can be derived from (3.32) by merely noting

that ṽ(y, t) is the velocity at time t of a particle which at time τ occupies the point x, while

at time t it occupies the point y. Physically, the streakline may be thought of as the colored

line generated when placing a dye at a fixed point in a flowing liquid.

Note that given a point x and a time t, the pathline of the particle occupying x at t

and the streamline through x at t have a common tangent. Indeed, this is equivalent to

stating that the velocity at time t of the material point occupying X at time t0 has the same

direction with the velocity of the material point that occupies x = χ(X, t) at time t.

In the case of steady motion, the pathline for any particle occupying a point x at time t

coincides with the streamline and streakline through x at time t. To argue this property,

consider a streamline (which is now a fixed curve, since the motion is steady) and take a

material point P situated at point x which happens to lie on this streamline at time t. Since

the velocity of P is tangent to the streamline that passes through x and since the streamline

does not change with time, the particle P will always stay on the streamline, hence its

pathline will coincide with the streamline through x. A similar argument can be made for

streaklines.

In general, pathlines can intersect (or self-intersect), since intersection points merely

mean that different particles (or the same particle) can occupy the same position at different

times. However, streamlines do not intersect, except at points where the velocity vanishes,

otherwise the velocity at an intersection point would have two different directions. Likewise,

a streakline through x may self-intersect for points which occupy x at multiple times.

3.2 The deformation gradient and other measures of

deformation

Consider a body B which occupies its reference configuration R0 at time t0 and the current

configuration R at time t. Also, let {EA} and {ei} be two fixed right-hand orthonormal

bases associated with the reference and current configuration, respectively.
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Recall that the motion χ is defined according to (3.6)1, and consider the deformation of an

infinitesimal material line element dX located at the point X of the reference configuration.

This material element is mapped into another infinitesimal line element dx at point x in the

current configuration at time t, see Figure 3.7. Keeping time fixed, taking differentials of

both sides of (3.6)1, and applying the chain rule, it follows that

x

dx

X

dX

RR0

Figure 3.7. Mapping of an infinitesimal material line element dX from the reference to the

current configuration.

dx =
∂χ

∂X
(X, t)dX = FdX , (3.34)

where F is the deformation gradient tensor relative to the reference configurationR0, defined

as

F =
∂χ(X, t)

∂X
. (3.35)

According to (3.34), the deformation gradient F provides the rule by which infinitesimal line

elements are mapped from the reference to the current configuration. Starting from (3.8)

and noting that

dX = dXAEA , dx = dxiei , (3.36)

the deformation gradient tensor is by necessity of the form

F =
∂χi(XB, t)

∂XA
ei ⊗ EA = FiAei ⊗ EA , (3.37)

so that (3.34) becomes

dxiei = (FiAei ⊗ EA)dXBEB = FiAdXAei . (3.38)

This means that one may rewrite (3.34) in component form as

dxi = χi,AdXA = FiAdXA . (3.39)
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It is clear from the above that the deformation gradient is a two-point tensor which has its

first “leg” in the current configuration and its second in the current configuration.

Recall now that the placement mapping χt is assumed invertible for any given t. Also,

recall the inverse function theorem of real analysis, which, in the case of the mapping χt can

be stated as follows: For a fixed time t, let χt : R0 → R be continuously differentiable (that

is,
∂χt

∂X
exists and is continuous) and consider an X ∈ R0, such that J = det

∂χt

∂X
(X) 6= 0.

Then, there is an open neighborhood P0 of X in R0 and an open neighborhood P of R, such

that χt(P0) = P and χt has a continuously differentiable inverse χ
−1
t , so that χ−1

t (P) = P0,

as in Figure 3.8. Moreover, for any x ∈ P, X = χ
−1
t (x) and

∂χ−1
t (x)

∂x
= (F(X, t))−1. The

last equation means that the derivative of the inverse motion with respect to x is identical

to the inverse of the gradient of the motion with respect to X.

xX

RR0

PP0

χt

Figure 3.8. Application of the inverse function theorem to the motion χ at a fixed time t.

As stipulated by the inverse function theorem, the mapping χt is invertible at a point X

for a given time t, if the Jacobian determinant (or, simply, the Jacobian) J = detF sat-

isfies the condition J 6= 0 at X for the given time t. In this case, the inverse deformation

gradient F−1 satisfies

dX =
∂χ−1

t (x)

∂x
dx = F−1dx . (3.40)

Using components, the inverse of F may be expressed as

F−1 =
∂χ−1

t A

∂xi
EA ⊗ ei = F−1

Ai EA ⊗ ei . (3.41)

The mapping χt is invertible at time t, if it is invertible at every point X, which is guaranteed

by the condition det J 6= 0 for all X ∈ R0.

Note that, based on (3.37) and (3.41),

F−1F = EA ⊗ EA = I , FF−1 = ei ⊗ ei = i , (3.42)
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where a distinction needs to be made between the referential identity tensor I and the spatial

identity tensor i. For the class of two-point tensors such as F, there is a corresponding two-

point identity tensor which is defined as δiAei⊗EA.
5 Likewise, note that the definition (2.28)

of the transpose of a tensor applies to two-point tensors such as F, and leads to the component

representation

FT = FiAEA ⊗ ei . (3.43)

Generally, the infinitesimal material line element dX stretches and rotates to dx under

the action of F. To explore this, write

dX = MdS (3.44)

and

dx = mds (3.45)

where M and m are unit vectors (that is, M · M = m · m = 1) in the direction of dX

and dx, respectively, while dS > 0 and ds > 0 are the infinitesimal lengths of dX and dx,

respectively. Next, define the stretch λ of the infinitesimal material line element dX at time t

as

λ =
ds

dS
, (3.46)

and note that, using (3.34), (3.44) and (3.45),

dx = FdX = FMdS

= mds , (3.47)

hence, upon also invoking (3.46),

λm = FM . (3.48)

Since detF 6= 0, it follows from (3.48) that λ 6= 0 and, in particular, that λ > 0, given that

m is chosen to reflect the sense of x.

To determine the value of λ, take the dot-product of each side of (3.48) with itself and

exploit the unity of m and the defining property (2.28) of tensor transposes, which lead to

λm · λm = λ2(m ·m) = λ2 = (FM) · (FM)

= M · FT (FM)

= M · (FTF)M

= M ·CM , (3.49)

5This implies that the component representation of the condition dx = dX is dxi = δiAdXA, where δiA

plays the role of a shifter between the coordinate systems associated with the two configurations.
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therefore,

λ2 = M ·CM . (3.50)

Here, C is the right Cauchy-Green6 deformation tensor, defined as

C = FTF (3.51)

or, upon recalling (3.37) and (3.43),

CAB = FiAFiB . (3.52)

Is important to observe from (3.51) and (3.50) that C is symmetric and positive-definite, and

is defined with respect to the basis in the reference configuration. To appreciate the physical

significance of C, it can be said that, given a direction M in the reference configuration,

knowledge of C suffices for the determination of the stretch λ of an infinitesimal material

line element dX along M when mapped to the line element dx in the current configuration.

Alternatively, one may use (3.44), (3.45) and (3.40) to write, in analogy with the preceding

derivation of C,

dX = F−1dx = F−1mds

= MdS , (3.53)

hence, upon invoking once more (3.46),

1

λ
M = F−1m . (3.54)

Again, taking the dot-products of each side of (3.54) with itself, recalling the unity of M,

and the definition (2.28) of the transpose of a tensor, it follows that

1

λ
M · 1

λ
M =

1

λ2
(M ·M) =

1

λ2
= (F−1m) · (F−1m)

= m · F−T (F−1m)

= m · (F−TF−1)m

= m ·B−1m (3.55)

or
1

λ2
= m ·B−1m . (3.56)

6George Green (1793–1841) was a British physicist.
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Here, B is the left Cauchy-Green tensor, defined as

B = FFT (3.57)

or, in component form,

Bij = FiAFjA , (3.58)

where use is made of (3.37) and (3.43). In contrast to C, the tensor B is defined with

respect to the basis in the current configuration, as seen from (3.58). Like C, it is easy

to establish from (3.56) and (3.57) that the tensor B is symmetric and positive-definite.

To articulate the physical importance of B, it can be said that, given a direction m in the

current configuration, B allows the determination of the stretch λ of an infinitesimal element

dx along m which is mapped from an infinitesimal material line element dX in the reference

configuration.

Example 3.2.1: Stretching and rotation of a line element
Consider the two-dimensional deformation associated with the mapping χ defined in compo-
nent form as

χ1 = χ1(XA, t) = aX1

χ2 = χ2(XA, t) = bX2

χ3 = χ3(XA, t) = X3 ,

where a and b are positive constants.
The components of the deformation gradient are

[FiA] =





a 0 0
0 b 0
0 0 1



 ,

while those of the right Cauchy-Green deformation tensor are

[CAB] =





a2 0 0
0 b2 0
0 0 1



 .

This is clearly a spatially homogeneous deformation, that is, the deformation gradient is inde-
pendent of X.

The principal stretches and associated principal directions are trivially found to be λ1 = a,
λ2 = b, λ3 = 1 and M1 = E1, M2 = E2, and M3 = E3.
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The stretch along M = 1√
2
(E1 + E2) is found using (3.49), that is

λ2 = M ·CM =
1

2
(a2 + b2) ,

therefore

λ =

√

1

2
(a2 + b2) .

An interesting question to pose (and one that can be answered by a simple experiment using
a stretchable sheet) is whether a material line element along M rotates under the mapping χ.
Recalling (3.48), it follows that

√

1

2
(a2 + b2) m = FM ,

or, in components,

√

1

2
(a2 + b2)





m1

m2

m3



 =





a 0 0
0 b 0
0 0 1




1√
2





1
1
0



 ,

which leads to 



m1

m2

m3



 =
1√

a2 + b2





a
b
0



 .

Comparing the component forms of m and M, it is readily concluded that m rotates relative
to M unless a = b.

Consider next the difference ds2 − dS2 in the square of the length of the line elements

dX and dx, and write this difference with the aid of (3.34) and (3.51) as

ds2 − dS2 = dx · dx− dX · dX
= (FdX) · (FdX)− dX · dX
= dX · FT (FdX)− dX · dX
= dX · (CdX)− dX · dX
= dX · (C− I)dX

= dX · 2EdX , (3.59)

where

E =
1

2
(C− I) =

1

2
(FTF− I) (3.60)
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is the (relative) Lagrangian strain tensor . Using components, the preceding equation can be

written as

EAB =
1

2
(CAB − δAB) =

1

2
(FiAFiB − δAB) , (3.61)

which shows that the Lagrangian strain tensor E is defined with respect to the basis in

the reference configuration. In addition, E is clearly symmetric and vanishes when the body

undergoes no deformation between the reference and the current configuration, that is, when

C = I.

The difference ds2 − dS2 may be also written with the aid of (3.40) and (3.57) as

ds2 − dS2 = dx · dx− dX · dX
= dx · dx− (F−1dx) · (F−1dx)

= dx · dx− dx · F−T (F−1dx)

= dx · dx− (dx ·B−1dx)

= dx · (i−B−1)dx

= dx · 2edx , (3.62)

where

e =
1

2
(i−B−1) =

1

2
(i− F−TF−1) (3.63)

is the (relative) Eulerian strain tensor or Almansi7 strain tensor . Using components, one

may rewrite the preceding equations as

eij =
1

2
(δij −B−1

ij ) =
1

2
(δij − F−1

Ai F
−1
Aj ) . (3.64)

Like E, the tensor e is symmetric and vanishes when the current configuration remains

undeformed relative to the reference configuration (that is, when B = i). However, unlike E,

the tensor e is naturally resolved into components on the basis in the current configuration.

While, in general, the infinitesimal material line element dX is both stretched and rotated

due to F, neither C (or B) nor E (or e) yield any useful information regarding the rota-

tion of dX. To extract rotation-related information from F, recall the polar decomposition

theorem, which states that any invertible tensor F can be uniquely decomposed into

F = RU = VR , (3.65)

7Emilio Almansi (1869–1948) was an Italian physicist and mathematician.
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where R is an orthogonal tensor and U,V are symmetric positive-definite tensors. In com-

ponent form, the polar decomposition is expressed as8

FiA = RiBUBA = VijRjA . (3.66)

The pairs of tensors (R,U) or (R,V) are the polar factors of F. The tensors U and V are

called the right stretch tensor and the left stretch tensor, respectively. It follows from (3.66)

that the component representations of these tensors are

U = UABEA ⊗EB , V = Vijei ⊗ ej , (3.67)

that is, they are resolved naturally on the bases of the reference and current configuration,

respectively. Also, R, like F, is a two-point tensor, with coordinate representation

R = RiAei ⊗ EA . (3.68)

A proof of the polar decomposition theorem is left to the reader (see Exercise 3-17).

It follows from (3.51) and (3.65)1 that

C = FTF = (RU)T (RU) = UTRTRU = UU = U2 (3.69)

and, likewise, from (3.57) and (3.65)2 that

B = FFT = (VR)(VR)T = VRRTV = VV = V2 . (3.70)

Given their respective relations to C and B, it is clear that U and V may be used to

determine the stretch of the infinitesimal material line element dX, which justifies their

name.

Next, a geometric interpretation is obtained for the polar decomposition decomposition,

starting with the right polar decomposition F = RU. To this end, taking into account (3.34),

write

dx = FdX = (RU)dX = R(UdX) . (3.71)

This suggests that the deformation of dX may be interpreted as taking place in two stages.

In the first one, dX is deformed into an infinitesimal line element dX′ = UdX of length dS ′,

8Alternative component representations, such as FiA = RijUjB are excluded due to the symmetry of U.

Indeed, if U = UiAei ⊗EA, then, by virtue of the definition in (2.28), UT = UiAEA ⊗ ei and U 6= UT .
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while in the second one, dX′, is further deformed into RdX′ = dx. Using (3.44), (3.50),

(3.69), and the symmetry of U, one finds that

dS ′ 2 = dX′ · dX′

= (UdX) · (UdX)

= dX ·UT (UdX)

= dX ·CdX

= (MdS) · (CMdS)

= dS2M ·CM

= λ2dS2 , (3.72)

which, upon recalling (3.46) implies that dX′, obtained under the action of U on dX, has

the same differential length as dx. Subsequently, recalling (3.71) and the definition of dX′,

write

dx · dx = (RdX′) · (RdX′) = dX′ · (RTRdX′) = dX′ · dX′ , (3.73)

which confirms that R induces a length-preserving transformation (that is, a rotation)

on dX′. In conclusion, F = RU implies that dX is first subjected to a stretch U (pos-

sibly accompanied by rotation) to its final length ds, then is rigidly transformed to its final

state dx by R, see Figure 3.9.

dxdX dX′

U R

Figure 3.9. Interpretation of the right polar decomposition.

Turning attention to the left polar decomposition F = VR, note that, with the aid

of (3.34),

dx = FdX = (VR)dX = V(RdX) . (3.74)

This, again, implies that the deformation of dX may be interpreted as taking place in two

stages. Indeed, in the first one, dX is deformed into an infinitesimal line element dx′ = RdX
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of length ds′, while in the second one, dx′ is mapped into Vdx′ = dx. For the first step, note

that

dx′ · dx′ = (RdX) · (RdX) = dX · (RTRdX) = dX · dX , (3.75)

which means that the mapping from dX to dx′ is length-preserving. For the second step,

recalling (3.74) and the definition of dx′, and employing (3.45), (3.56), (3.70), and the

symmetry of V write,

ds′ 2 = dx′ · dx′

= (V−1dx) · (V−1dx)

= dx ·V−T (V−1dx)

= dx ·B−1dx

= (mds) · (B−1mds)

= ds2 m ·B−1m

=
1

λ2
ds2 , (3.76)

which implies that V induces the full stretch λ during the mapping of dx′ to dx. Thus, the

left polar decomposition F = VR means that the infinitesimal material line element dX is

first subjected to a rotation, followed by stretching (with possibly further rotation) to its

final state dx, see Figure 3.10.

dxdX dx′

VR

Figure 3.10. Interpretation of the left polar decomposition.

It is conceptually desirable to decompose the deformation gradient into a pure rotation

and a pure stretch (or vice versa). To explore such an option, consider first the right polar

decomposition of equation (3.71). In this case, for the stretch U to be pure, the infinitesimal

line elements dX and dX′ need to be parallel, namely

dX′ = UdX = λdX , (3.77)
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or, upon recalling (3.44),

UM = λM . (3.78)

Equation (3.78) represents a linear symmetric eigenvalue problem. The eigenvalues λA > 0

of (3.78) are called the principal stretches and the associated eigenvectors MA are called the

principal directions of stretch. When λA are distinct, one may write

UMA = λ(A)M(A)

UMB = λ(B)M(B) , (3.79)

where the parentheses around the subscripts signify that the summation convention is not

in use. Upon premultiplying the preceding two equations with MB and MA, respectively,

one gets

MB · (UMA) = λ(A)MB ·M(A) (3.80)

MA · (UMB) = λ(B)MA ·M(B) . (3.81)

Recalling the symmetry of U and subtracting the preceding two equations from one another

leads to

(λ(A) − λ(B))M(A) ·M(B) = 0 . (3.82)

Since, by assumption, λA 6= λB, it follows that

MA ·MB = δAB , (3.83)

that is, the principal directions are mutually orthogonal and {M1,M2,M3} form an or-

thonormal basis on E3.

It turns out that regardless of whether U has distinct or repeated eigenvalues, the clas-

sical spectral representation theorem for symmetric tensors guarantees that there exists an

orthonormal basis {MA} of E3 consisting entirely of eigenvectors of U and that, if {λA} are

the associated eigenvalues,

U =

3∑

A=1

λ(A)M(A) ⊗M(A) . (3.84)

The preceding equation may be interpreted in linear-algebraic terms as implying that there

exists a basis of E3, here {MA}, with respect to which the components of U form a diagonal
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matrix. In view of (3.69), the spectral representation (3.84) implies that

C = U2 =

(
3∑

A=1

λ(A)M(A) ⊗M(A)

)(
3∑

B=1

λ(B)M(B) ⊗M(B)

)

=

3∑

A=1

3∑

B=1

λ(A)λ(B)(M(A) ⊗M(A))(M(B) ⊗M(B))

=

3∑

A=1

3∑

B=1

λ(A)λ(B)(M(A) ·M(B))(M(A) ⊗M(B))

=
3∑

A=1

λ2
(A)M(A) ⊗M(A) (3.85)

and, by induction,

Um =

3∑

A=1

λm
(A)M(A) ⊗M(A) , (3.86)

for any integer m. More generally, Um may be defined as above for any real m. Again, in

linear-algebraic terms this is tantamount to raising a diagonal 3× 3 matrix to any power by

merely raising all of its components to that power, provided this operation is well-defined.

Given (3.84), it is now possible to formally solve (3.69) for U, such that

U = C1/2 , (3.87)

since C is positive-definite, hence its eigenvalues {λA} are positive.

Following an analogous procedure for the left polar decomposition, note for the left

stretch V to be pure it is necessary that

dx = Vdx′ = λdx′ (3.88)

or, upon recalling that equations (3.44) and (3.71) yield dx′ = RMdS,

VRM = λRM . (3.89)

Comparing the eigenvalue problems in (3.78) and (3.89), it is readily concluded thatU andV

have the same eigenvalues but the eigenvectors of V are rotated by R relative to those of U.

Appealing to the spectral representation theorem in (3.84), one finds from (3.89) that

V =
3∑

i=1

λ(i)m(i) ⊗m(i) (3.90)
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and also, in view of (3.70),

B =

3∑

i=1

λ2
(i)m(i) ⊗m(i) , (3.91)

where {λi} andmi = RMi, i = 1, 2, 3, are the principal stretches and the principal directions,

respectively. More generally, any (not necessarily integer) power of V can be expressed as

Vm =
3∑

i=1

λm
(i)m(i) ⊗m(i) . (3.92)

In particular, with reference to (3.70), the positive-definiteness of B allows for the formal

representation of V as

V = B1/2 . (3.93)

Example 3.2.2: A two-dimensional motion and deformation
Consider a motion χ defined in component form as

χ1 = χ1(XA, t) = (
√
a cosϑ)X1 − (

√
a sin ϑ)X2

χ2 = χ2(XA, t) = (
√
a sinϑ)X1 + (

√
a cosϑ)X2

χ3 = χ3(XA, t) = X3 ,

where a = a(t) > 0 and ϑ = ϑ(t). This is clearly a planar motion, specifically independent of
X3.

The components FiA = χi,A of the deformation gradient can be easily determined as

[FiA] =





√
a cosϑ −√

a sinϑ 0√
a sinϑ

√
a cosϑ 0

0 0 1



 .

This is, again, a spatially homogeneous deformation. Further, note that det(FiA) = a > 0,
hence the motion is always invertible.

The components CAB of C and the components UAB of U can be directly determined as

[CAB] =





a 0 0
0 a 0
0 0 1





and

[UAB] =





√
a 0 0
0

√
a 0

0 0 1



 .
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Also, recall that
CM = λ2M ,

which implies that λ1 = λ2 =
√
a and λ3 = 1.

Given that U is known, one may apply the right polar decomposition to determine the
rotation tensor R. Indeed, in this case,

[RiA] =





√
a cosϑ −√

a sinϑ 0√
a sin ϑ

√
a cosϑ 0

0 0 1









1√
a

0 0

0 1√
a

0

0 0 1



 =





cosϑ − sin ϑ 0
sinϑ cosϑ 0
0 0 1



 .

Note that this motion yields pure stretch for ϑ = 2kπ, where k = 0, 1, 2, . . ..

Now, attempt a reinterpretation of the right polar decomposition (3.65)1, in light of

the discussion of principal stretches and directions. Indeed, when U acts on infinitesimal

material line elements which are aligned with the principal directions {MA}, then it subjects

them to a pure stretch. Subsequently, the stretched elements are reoriented to their final

direction by the action of R, see Figure 3.11. A corresponding reinterpretation of the left

x

X
M1

M2

M3

λ1M1

λ2M2

λ3M3

λ1RM1

λ2RM2
λ3RM3

U

R

Figure 3.11. Interpretation of the right polar decomposition relative to the principal directions

{MA} and associated principal stretches {λA}.

polar decomposition can be realized along the preceding lines for the right decomposition.

Specifically, here the infinitesimal material line elements that are aligned with the principal

stretches {MA} are first reoriented by R and subsequently subjected to a pure stretch to

their final length by the action of V, see Figure 3.12.

Turning to the polar factor R in (3.65), recall that it is an orthogonal tensor, which

implies that

det (RTR) = detRT detR = (detR)2 (3.94)

= det I = 1 , (3.95)
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x

X
M1

M2

M3

RM1

RM2

RM3

λ1RM1

λ2RM2
λ3RM3

V

R

Figure 3.12. Interpretation of the left polar decomposition relative to the principal directions

{RMi} and associated principal stretches {λi}.

hence detR = ±1. An orthogonal tensor R is termed proper (resp. improper) if detR = 1

(resp. detR = −1).

Consider now a proper orthogonal tensorR resolved on a common basis to be determined.

Upon invoking elementary properties of determinants, it is seen that

RTR = I ⇒ RTR−RT = I−RT

⇒ RT (R− I) = −(R− I)T

⇒ detRT det(R− I) = − det(R− I)T

⇒ det(R− I) = − det(R− I)

⇒ det(R− I) = 0 , (3.96)

so that R has at least one unit eigenvalue. Denote by p a unit eigenvector associated with

the above eigenvalue (there exist two such unit vectors which are equal and opposite), and

consider two unit vectors q and r = p × q that lie on a plane normal to p. It follows that

{p,q, r} form a right-hand orthonormal basis of E3 and, thus, R can be expressed with

reference to this basis as

R = Rppp⊗ p+Rpqp⊗ q+Rprp⊗ r+Rqpq⊗ p+Rqqq⊗ q+Rqrq⊗ r

+Rrpr⊗ p+Rrqr⊗ q +Rrrr⊗ r . (3.97)

Note that, since p is an eigenvector of R,

Rp = p ⇒ Rppp+Rqpq+Rrpr = p , (3.98)

which implies that

Rpp = 1 , Rqp = Rrp = 0 . (3.99)
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Moreover, given that R is orthogonal,

R−1p = RTp = p ⇒ Rppp+Rpqq +Rprr = p , (3.100)

therefore

Rpq = Rpr = 0 . (3.101)

Taking into account (3.99) and (3.101), the orthogonality condition RTR = I can be ex-

pressed as

(p⊗ p+Rqqq⊗ q+Rqrr⊗ q +Rrqq⊗ r+Rrrr⊗ r)

(p⊗ p+Rqqq⊗ q+Rqrq⊗ r+Rrqr⊗ q +Rrrr⊗ r)

= p⊗ p+ q⊗ q+ r⊗ r . (3.102)

and, after reducing the terms on the left-hand side,

p⊗ p+ (R2
qq +R2

rq)q⊗ q+ (R2
rr +R2

qr)r⊗ r

+ (RqqRqr +RrqRrr)q⊗ r+ (RrrRrq +RqrRqq)r⊗ q

= p⊗ p+ q⊗ q+ r⊗ r . (3.103)

The above equation implies that

R2
qq +R2

rq = 1 , (3.104)

R2
rr +R2

qr = 1 , (3.105)

RqqRqr +RrqRrr = 0 , (3.106)

RrrRrq +RqrRqq = 0 , (3.107)

where it is noted that equations (3.106) and (3.107) are identical, as expected, due to the

symmetry of RTR. Equations (3.104) and (3.105) imply that there exist angles θ and φ,

such that

Rqq = cos θ , Rrq = sin θ , (3.108)

and

Rrr = cosφ , Rqr = sin φ . (3.109)

It follows from (3.106) (or, equivalently, from (3.107)) that

cos θ sinφ+ sin θ cosφ = sin (θ + φ) = 0 , (3.110)
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thus

φ = −θ + 2kπ or φ = π − θ + 2kπ , (3.111)

where k is an arbitrary integer. It can be easily shown that the latter choice yields an

improper orthogonal tensor R (hence, is rejected), thus φ = −θ + 2kπ, and, given (3.109),

Rrr = cos θ , Rqr = − sin θ . (3.112)

From (3.97), (3.99), (3.101), (3.108), and (3.112), it follows that R can be expressed as

R = p⊗ p+ cos θ (q⊗ q+ r⊗ r)− sin θ (q⊗ r− r⊗ q) . (3.113)

Using components relative to the basis {p,q, r}, equation (3.113) implies that

[Rab] =






1 0 0

0 cos θ − sin θ

0 sin θ cos θ




 . (3.114)

The angle θ that appears in (3.113) can be geometrically interpreted as follows: let an

arbitrary vector x be written in terms of {p,q, r} as

x = pp + qq + rr , (3.115)

where

p = p · x , q = q · x , r = r · x , (3.116)

and note that

Rx = pp+ (q cos θ − r sin θ)q + (q sin θ + r cos θ)r . (3.117)

Equation (3.117) indicates that, under the action of R, the vector x remains unstretched

and it rotates by an angle θ around the p-axis, where θ is assumed positive when directed

from q to r in the sense of the right-hand rule. This justifies the characterization of R as a

rotation tensor.

The representation (3.113) of a proper orthogonal tensor R is often referred to as Ro-

drigues’9 formula. If R is improper orthogonal, the alternative solution in (3.111)2 in con-

nection with the negative unit eigenvalue p implies that Rx rotates by an angle θ around

the p-axis and is also reflected relative to the origin of the orthonormal basis {p,q, r}.
9Benjamin Olinde Rodrigues (1795–1851) was a French mathematician and banker.
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r

q

q

r

θ

Rx
p x

θ

q

r

Figure 3.13. Geometric interpretation of the rotation tensor R by its action on a vector x.

The preceding analysis may be repeated with only minor algebraic modifications for the

case of improper orthogonal tensors. However, upon noting that if R is proper orthogonal,

then −R is improper orthogonal, one may readily deduce the general representation of an

improper orthogonal tensor from (3.113). An immediate observation for improper orthogonal

tensors is that they possess an eigenvalue which is equal to −1. This means that there exists

a direction associated with the unit eigenvector p, such that Rp = −p. This explains why

improper orthogonal tensors are sometimes referred to as reflection tensors.

A simple counting check can be now employed to assess the polar decomposition (3.65).

Indeed, F has nine independent components and U (or V) has six independent components.

At the same time, R has three independent components, for instance two of the three

components of the unit eigenvector p and the angle θ.

Example 3.2.3: Sphere under homogeneous deformation
Consider the part of a deformable body which occupies a spherical region P0 of radius σ
centered at the fixed origin O of E3. The equation of the surface ∂P0 of the sphere can be
written as

Π ·Π = σ2 , (3.118)

where the position vector Π of a point on ∂P0 can be expressed as

Π = σM , (3.119)
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where σ > 0 and M ·M = 1.
Assume next that the body undergoes a spatially homogeneous deformation with deforma-

tion gradient F(t), so that (3.34) may be integrated in space to yield

x = FX , (3.120)

given the fixed origin. Setting X = Π, this leads to

π = FΠ , (3.121)

where π(t) is the image of Π in the current configuration.

O O
M

m

PP0

Π
π

Figure 3.14. Spatially homogeneous deformation of a sphere.

Recalling (3.48), let λ(t) be the stretch of a material line element that lies along M in the
reference configuration, and m(t) the unit vector in the direction of this material line element
at time t, as in Figure 3.14. Then, equations (3.48), (3.119) and (3.121) imply that

π = σλm . (3.122)

In addition, given (3.55) and (3.122), the left Cauchy-Green deformation tensor B(t) satisfies

π ·B−1
π = σ2 . (3.123)

Recalling next the representation of the left Cauchy-Green deformation tensor in (3.91)
and noting that {mi} form an orthonormal basis in E3, the position vector π can be uniquely
resolved in this basis as

π = πimi . (3.124)

Starting from equation (3.91), one may write

B−1 =

3∑

i=1

λ−2
(i)m(i) ⊗m(i) , (3.125)
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and using (3.124) and (3.125), deduce that

π ·B−1
π = λ−2

i π2
i . (3.126)

m1

m2

m3

Figure 3.15. Image of a sphere under homogeneous deformation.

It is readily seen then from (3.123) and (3.126) that

π2
1

λ2
1

+
π2
2

λ2
2

+
π2
3

λ2
3

= σ2 ,

which demonstrates that, under a spatially homogeneous deformation, the spherical region P0

is deformed into an ellipsoid with principal semi-axes of length σλi along the principal directions
of B, see Figure 3.15.

Consider now the transformation of an infinitesimal material volume element dV of the

reference configuration to its image dv in the current configuration under the motion χ.

The referential volume element is defined as an infinitesimal parallelepiped with sides dX1,

dX2, and dX3, anchored at point X. Likewise, its spatial counterpart is the infinitesimal

parallelepiped at x with sides dx1, dx2, and dx3, where each dxi is the image of dXi under χ,

see Figure 3.16.

To relate the two infinitesimal volume elements, first note that

dV = dX1 · (dX2 × dX3) = dX2 · (dX3 × dX1) = dX3 · (dX1 × dX2) , (3.127)

where each of the representations of dV in (3.127) corresponds to the scalar triple product

[dX1, dX2, dX3] of the vectors dX1, dX2 and dX3. Taking into account the definition of the
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xX

R0 R

dX1

dX2dX3

dx1

dx2

dx3

Figure 3.16. Mapping of an infinitesimal material volume element dV to its image dv in the

current configuration.

determinant in (2.48)3, this leads to

dv = dx1 · (dx2 × dx3)

= (FdX1) ·
(
(FdX2)× (FdX3)

)

= [FdX1,FdX2,FdX3]

= detF[dX1, dX2, dX3]

= JdV , (3.128)

or, simply,

dv = JdV . (3.129)

Here, one may argue that if, by convention, dV > 0 (which is true as long as the triad

{dX1, dX2, dX3} observes the right-hand rule), then the relative orientation of the line ele-

ments {dx1, dx2, dx3} is preserved during the motion if J > 0 everywhere and at all times.

Indeed, since the motion is assumed smooth in time and invertible, any changes in the sign

of J would necessarily imply that there exists a time t at which J = 0 at some material

point(s), which would violate the assumption of invertibility of the motion at any given time.

Based on the preceding observation, the Jacobian J will be taken to be positive at all times.

Motions for which dv = dV (that is, J = 1) for all infinitesimal material volume ele-

ments dV at all times are called isochoric (or volume-preserving).

Consider next the transformation of an infinitesimal material surface element of area dA

in the reference configuration to its image of area da in the current configuration. The

referential surface element is defined as the parallelogram formed by the infinitesimal material

line elements dX1 and dX2, such that

dA = dX1 × dX2 = NdA , (3.130)
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where dA is the infinitesimal area vector and N is the unit normal to the surface element

consistently with the right-hand rule, see Figure 3.17. Similarly, in the current configuration,

one may write

da = dx1 × dx2 = nda , (3.131)

where n is the corresponding unit normal to the surface element defined by the images dx1

and dx2 of X1 and X2 under χ. Next, let dX be any infinitesimal material line element, such

xX

R0 R

dX1

dX2

dx1

dx2

N n

Figure 3.17. Mapping of an infinitesimal material surface element dA to its image da in the

current configuration.

that N ·dX > 0 and consider the infinitesimal volumes dV and dv formed by {dX1, dX2, dX}
and {dx1, dx2, dx}, respectively, where dx = FdX. It follows from (3.34), (3.127) and (3.128)

that

dv = dx · (dx1 × dx2) = dx · nda = (FdX) · nda
= JdV

= JdX · (dX1 × dX2) = JdX ·NdA , (3.132)

which implies that

(FdX) · nda = JdX ·NdA , (3.133)

hence also

dX · (FTnda− JNdA) = 0 , (3.134)

for any infinitesimal material line element dX. In view of the arbitrariness of dX, this leads

to

nda = JF−TNdA , (3.135)
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which is known as Nanson’s 10 formula. Taking the dot-product of each side in (3.135) with

itself and recalling (3.51) yields

da2 = J2F−TN · F−TN dA2 = J2N ·C−1N dA2 , (3.136)

therefore, since J is positive and C−1 positive-definite,

|da| = J
√
N ·C−1N |dA| . (3.137)

As argued in the case of the infinitesimal volume transformations, if an infinitesimal material

line element satisfies dA > 0, then da > 0 everywhere and at all times. This means that

equation (3.137) becomes simply

da = J
√
N ·C−1N dA . (3.138)

3.3 Velocity gradient and other measures of deforma-

tion rate

Derivatives of the motion χ with respect to time and space were discussed in Section 3.1

and 3.2, respectively. In the present section, interest is focused on mixed time and space

derivatives of the motion, which yield measures of the rate at which deformation occurs in

the continuum.

To start, define the spatial velocity gradient tensor L, such that

dv = Ldx , (3.139)

hence

L = grad ṽ =
∂ṽ

∂x
. (3.140)

This tensor is naturally defined relative to the basis {ei} in the current configuration, there-

fore one may write its component representation as

L =
∂ṽi
∂xj

ei ⊗ ej . (3.141)

10Edward J. Nanson (1850–1936) was an English-born Australian mathematician.
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Next, recall any such tensor can be uniquely decomposed into a symmetric and a skew-

symmetric part, so that L can be written as

L = D+W , (3.142)

where

D =
1

2
(L+ LT ) (3.143)

is the rate-of-deformation tensor, which is symmetric, and

W =
1

2
(L− LT ) (3.144)

is the vorticity (or spin) tensor, which is skew-symmetric.

Example 3.3.1: Material time derivative of an infinitesimal volume element
Recall that the infinitesimal volume element dv in the current configuration may be expressed
as in (3.128)1. Upon taking the material time derivatives of both sides of this equation, one
finds that

ḋv = dv1 · (dx2 × dx3) + dx1 · (dv2 × dx3) + dx1 · (dx2 × dv3)

or, upon invoking (3.139),

ḋv = Ldx1 · (dx2 × dx3) + dx1 · (Ldx2 × dx3) + dx1 · (dx2 × Ldx3)

= [Ldx1, dx2, dx3] + [dx1,Ldx2, dx3] + [dx1, dx2,Ldx3] .

If follows from the preceding equation and the definition of the trace of a tensor in (2.48)1
that

ḋv = trL dv = div v dv . (3.145)

This derivation is noteworthy because it does not depend on the existence of a reference
configuration. An alternative derivation of the same result is found in Exercise 3-29.

Consider now the rate of change of the deformation gradient for a fixed particle associated

with point X in the reference configuration. To this end, write the material time derivative

of F as

Ḟ =
˙(

∂χ(X, t)

∂X

)

=
∂

∂X
˙

χ(X, t) =
∂v̂(X, t)

∂X
=

∂ṽ(x, t)

∂x

∂χ(X, t)

∂X
= LF , (3.146)

where use is made of (3.11)1, (3.35), (3.140), and the chain rule. Also, in the above derivation

the change in the order of differentiation between the derivatives with respect to X and t is

allowed under the assumption that the mixed second derivative
∂2
χ

∂X∂t
is continuous.
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Given (3.51), (3.143), and (3.146), one may employ the product rule to express the rate

of change of the right Cauchy-Green deformation tensor C for a fixed particle X as

Ċ =
˙

FTF = ḞTF+ FT Ḟ = (LF)TF+ FT (LF) = FT (LT + L)F = 2FTDF . (3.147)

Likewise, for the left Cauchy-Green deformation tensor, one may use (3.57) and (3.146) to

write

Ḃ =
˙

FFT = ḞFT + FḞT = (LF)FT + F(LF)T = LB+BLT . (3.148)

Similar results may be readily obtained for the rates of the Lagrangian and Eulerian strain

measures. Specifically, it can be immediately shown by appealing to (3.60) and (3.147) that

Ė = FTDF (3.149)

and, also, by appeal to (3.63) and (3.148) that

ė =
1

2
(B−1L + LTB−1) , (3.150)

see also Exercise 3-31.

Example 3.3.2: Killing’s11 theorem
Recall that, by definition, the distance between any two material points in a rigid motion
remains constant at all time. This is equivalent to stating that

d

dt
ds = 0 ,

where ds denotes, as usual, the distance between any two infinitesimally close points at time t.
Upon using, equivalently, the square of ds in the preceding condition, one concludes with the
aid of (3.45), (3.140), (3.142), and the chain rule that

d

dt
ds2 =

d

dt
(dx · dx)

= 2dx · d(dx)
dt

= 2dx · dv

= 2dx ·
(
∂v

∂x

)

dx

= 2dx · Ldx
= 2dx ·Ddx = 0 ,
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which holds true for any dx if, and only if, D = 0. This proves Killing’s theorem, which asserts
that D = 0 is a necessary and sufficient condition for a motion to be rigid.

Proceed now to discuss the physical interpretations of the rate tensorsD andW. Starting

from (3.48), take the material time derivatives of both sides and use (3.146) to obtain the

relation

λ̇m+ λṁ = ḞM+ FṀ

= LFM = L(λm) = λLm . (3.151)

Note that Ṁ = 0, since M is a fixed vector in the fixed reference configuration, hence does

not vary with time. Upon taking the dot-product of each side of (3.151) with m, it follows

that

λ̇m ·m+ λṁ ·m = λ(Lm) ·m . (3.152)

Given that m is a unit vector, it is immediately concluded that ṁ ·m = 0 (see Figure 3.18),

1

m

ṁ

Figure 3.18. A unit vector m and its rate ṁ.

so that the preceding equation simplifies to

λ̇ = λm · Lm . (3.153)

Further, since the skew-symmetric part W of L satisfies

m ·Wm = m · (−WT )m = −m ·Wm , (3.154)

hence m ·Wm = 0, one may exploit (3.142) to rewrite (3.153) as

λ̇ = λm ·Dm (3.155)

11Wilhelm Killing (1847–1923) was a German mathematician.
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or, alternatively, as
˙lnλ = m ·Dm = D · (m⊗m) . (3.156)

Thus, the tensorD fully determines the material time derivative of the logarithmic stretch lnλ

for a material line element along a direction m in the current configuration. In particular,

this material time derivative equals to the projection of the vector Dm along the m-axis.

For a geometric interpretation of the off-diagonal components of D, see Exercise 3-32.

Given the definition of W in (3.144) and recalling (2.35) and (2.85), the associated axial

vector w satisfies the relation

w =
1

4
(vj,i − vi,j)ei × ej

=
1

4
(vj,i − vi,j)ǫijkek

=
1

4
(ǫijkvj,i − ǫijkvi,j)ek

=
1

4
(ǫijkvj,i − ǫjikvj,i)ek

=
1

2
ǫijkvj,iek

=
1

2
curlv . (3.157)

In this case, the axial vector w is called the vorticity vector. Also, a motion is termed

irrotational if W = 0 (or, equivalently, w = 0).

Example 3.3.3: Rates of deformation for a simple motion
Consider a motion whose velocity is given by

v = x2x3e1 + x3x1e2 + 3x1x2e3 .

The components of the spatial velocity gradient are found from (3.140) to be

[Lij ] =





0 x3 x2

x3 0 x1

3x2 3x1 0



 ,

while those of the rate-of-deformation tensor and vorticity tensor are found respectively from
(3.143) and (3.144) to be

[Dij ] =





0 x3 2x2

x3 0 2x1

2x2 2x1 0
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and

[Wij ] =





0 0 −x2

0 0 −x1

x2 x1 0



 .

The components of the vorticity vector are given, according to (2.38), by

[wk] =





x1

−x2

0



 .

Let w = w̃(x, t) be the vorticity vector field at a given time t. The vortex line through x

at time t is the space curve that passes through x and is tangent to the vorticity vector

field w̃ at all of its points. Hence, in analogy to the definition of streamlines in (3.30) and

(3.31), the equations for vortex lines are

dy = w̃(y, t)dτ , y(τ0) = x , (t fixed) (3.158)

or, using components,

dy1
w̃1(yj, t)

=
dy2

w̃2(yj, t)
=

dy3
w̃3(yj, t)

= dτ , yi(τ0) = xi , (t fixed) . (3.159)

For an irrotational motion, any line passing through x at time t is a vortex line.

Returning to the physical interpretation of W, take m̄ to be a unit vector that lies along

a principal direction of D in the current configuration, namely

(D− γ̄i)m̄ = 0 , (3.160)

where γ is the eigenvalue of D associated with the eigenvector m̄. It follows from (3.160),

in conjunction with (3.155) and (3.156), that

(Dm̄) · m̄ = γ̄m̄ · m̄ = γ̄ =
˙̄λ

λ̄
=

˙
ln λ̄ , (3.161)

that is, the eigenvalues of D are equal to the material time derivatives of the logarithmic

stretches ln λ̄ of line elements along the eigendirections m̄ in the current configuration.

Starting from (3.151) and using (3.142) leads to

ṁ = Lm− λ̇

λ
m =

(

L− λ̇

λ
i

)

m

=

(

D− λ̇

λ
i

)

m+Wm , (3.162)
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which holds for any direction m in the current configuration. Setting in the above equation

m = m̄ and using (3.160) and (3.161), it follows that

˙̄m = Wm̄ = w× m̄ . (3.163)

Therefore, the material time derivative of a unit vector m̄ along a principal direction of D

is determined by (3.163). Recalling from rigid-body dynamics the formula relating linear

to angular velocities, one may conclude that w plays the role of the angular velocity of a

line element which, in the current configuration, lies along a principal direction m̄ of D,

see Figure 3.19. For all other directions m, equation (3.162) implies that both D and W

contribute to determining the rate ṁ.

m̄

˙̄m = w × m̄

Figure 3.19. A physical interpretation of the vorticity vector w.

3.4 Superposed rigid-body motions

Consider a body B undergoing a motion χ : R0 × R 7→ R and, take another invertible

motion χ
+ : R0 × R

+ of the same body, such that

x+ = χ
+(X, t) , (3.164)

where χ and χ
+ differ by a rigid-body motion. Then, with reference to Figure 3.20, one

may write

x+ = χ
+(X, t) = χ

+(χ−1
t (x), t) = χ̄

+(x, t) (3.165)

or, equivalently,

x+ = χ
+
t (X) = χ̄

+
t (x) = χ̄

+
t (χt(X)) , (3.166)

where χ̄
+
t is a rigid-body motion superposed on the original motion χ. Equation (3.166)

implies that χ+
t may be thought of as the composition of the placement χ̄+

t with χt, that is,

χ
+
t = χ̄

+
t ◦ χt , (3.167)
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see also Section 2.3. Clearly, the superposed motion χ̄
+(x, t) is invertible for fixed t, since χ+

x

x+

X

y

y+

Y

R0

R

R+

χ

χ
+

χ̄
+

Figure 3.20. Configurations associated with motions χ and χ
+ differing by a superposed rigid-

body motion χ̄
+.

is assumed invertible for fixed t, and, in view of (3.166) and (3.167), χ̄+−1
t = χt ◦ χ+−1

t .

Next, take a second point Y in the reference configuration, so that y = χ(Y, t) and write

y+ = χ
+(Y, t) = χ

+(χ−1
t (y), t) = χ̄

+(y, t) . (3.168)

Recalling that R and R+ differ only by a rigid transformation, one may conclude that

(x− y) · (x− y) = (x+ − y+) · (x+ − y+)

=
[
χ̄

+(x, t)− χ̄
+(y, t)

]
·
[
χ̄

+(x, t)− χ̄
+(y, t)

]
, (3.169)

for all x, y in the region R at any time t. Since x and y are chosen independently, one may

differentiate equation (3.169) first with respect to x to get

x− y =

[
∂χ̄+(x, t)

∂x

]T

[χ̄+(x, t)− χ̄
+(y, t)] . (3.170)

Then, equation (3.170) may be differentiated with respect to y, which leads to

i =

[
∂χ̄+(x, t)

∂x

]T [
∂χ̄+(y, t)

∂y

]

. (3.171)

Since the motion χ̄
+ is invertible, equation (3.171) can be equivalently written as

[
∂χ̄+(x, t)

∂x

]T

=

[
∂χ̄+(y, t)

∂y

]−1

. (3.172)
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Then, the left- and right-hand side should be necessarily functions of time only, hence there

is a tensor Q such that

[
∂χ̄+(x, t)

∂x

]T

=

[
∂χ̄+(y, t)

∂y

]−1

= QT (t) . (3.173)

Equation (3.173) implies that

∂χ̄+(x, t)

∂x
=

∂χ̄+(y, t)

∂y
= Q(t) , (3.174)

which, given (3.171), implies that QT (t)Q(t) = i, therefore Q(t) is an orthogonal tensor.

Further, note that upon using (3.174) and the chain rule, the deformation gradient F+ of

the motion χ
+ is written as

F+ =
∂χ+

∂X
=

∂χ̄+

∂x

∂χ

∂X
= QF . (3.175)

Since, by assumption, both motions χ and χ
+ lead to deformation gradients with positive

Jacobians, equation (3.175) implies that detQ > 0, hence detQ = 1, that is, Q is proper

orthogonal.

Given that Q is a function of time only, equation (3.174)1 can be directly integrated with

respect to x, leading to

x+ = χ̄
+(x, t) = Q(t)x + c(t) , (3.176)

where c(t) is a vector function of time. Equation (3.176) is the general form of the rigid-body

motion χ̄
+ superposed on the original motion χ.

Examine next the transformation of the velocity v under a superposed rigid-body motion.

To this end, using (3.176), one finds that

v+ = χ̇
+(X, t)

= χ̇
+
(x, t) =

˙
[Q(t)x + c(t)] = Q̇(t)x+Q(t)v + ċ(t) . (3.177)

Since QQT = i, it can be readily concluded that

˙
QQT = Q̇QT +QQ̇T = 0 . (3.178)

Setting

Ω = Q̇QT , (3.179)
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it follows from (3.178) that the tensor Ω(t) is skew-symmetric, hence is associated with an

axial vector ω(t). Returning to (3.177), write, with the aid of (3.176) and (3.179),

v+ = ΩQx+Qv + ċ = Ω(x+ − c) +Qv + ċ . (3.180)

Invoking the definition of the axial vector ω in (2.34), one may further rewrite (3.180) as

v+ = ω ×Qx+Qv + ċ = ω × (x+ − c) +Qv + ċ . (3.181)

It is clear from (3.180) and (3.181) that Ω and ω can be thought of as the tensor and vector

representations of the angular velocity of the superposed rigid-body motion, respectively. In

addition, the second and third terms on the right-hand side of (3.180) or (3.181) correspond

to the apparent velocity and the translational velocity due to the superposed rigid-body

motion, respectively.

Starting from (3.180)1, it is also easy to show with the aid of (3.179) that

a+ = Ω̇Qx +Ω2Qx + 2ΩQv +Qa+ c̈ . (3.182)

The first term on the right-hand side of (3.182) is referred to as the Euler acceleration,

which is due to non-vanishing angular acceleration Ω̇ of the superposed rigid-body motion.

Likewise, the second term is known as the centrifugal acceleration. Also, the third term on

the right-hand side of (3.182) is the Coriolis acceleration, while the last two are the apparent

acceleration in the rotated frame and the translational acceleration, respectively.

Given (3.175)3 and recalling the right polar decomposition of F in (3.65)1, write

F+ = R+U+

= QF = QRU ,
(3.183)

where R, R+ are proper orthogonal tensors and U, U+ are symmetric positive-definite

tensors. Since, clearly,

(QR)T (QR) = (RTQT )(QR) = RT (QTQ)R = RTR = I (3.184)

and also det (QR) = (detQ)(detR) = 1, therefore QR is proper orthogonal, the uniqueness

of the polar decomposition, in conjunction with (3.183), necessitates that

R+ = QR (3.185)

and

U+ = U . (3.186)
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Similarly, equation (3.175)3 and the left decomposition of F in (3.65)2 yield

F+ = V+R+ = V+(QR)

= QF = Q(VR) ,
(3.187)

which implies that

V+(QR) = Q(VR) , (3.188)

hence,

V+ = QVQT . (3.189)

It follows readily from (3.51) and (3.175)3 that

C+ = F+T

F+ = (QF)T (QF) = (FTQT )(QF) = FTF = C (3.190)

and, correspondingly, from (3.57) and (3.175)3, that

B+ = F+F+T

= (QF)(QF)T = (QF)(FTQT ) = QBQT . (3.191)

It follows from equations (3.60), (3.63) and (3.190), (3.191) that

E+ =
1

2
(C+ − I) =

1

2
(C− I) = E (3.192)

and

e+ =
1

2
(i−B+−1) =

1

2
[i− (QBQT )−1]

=
1

2
(i−Q−TB−1Q−1)

=
1

2
(i−QB−1QT )

=
1

2
Q(i−B−1)QT

= QeQT . (3.193)

The transformation properties of other kinematic quantities of interest under superposed

rigid-body motion may be established by appealing to the preceding results. For instance,

given (3.34) and (3.175)3, infinitesimal material line elements transform as

dx+ = F+dX = (QF)dX = Q(FdX) = Qdx . (3.194)
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Similarly, recalling (3.129) and taking into account (3.175)3, infinitesimal material volume

elements transform as

dv+ = J+dV = det(QF)dV = (detQ)(detF)dV = (detF)dV = JdV = dv . (3.195)

For infinitesimal material area elements, equation (3.135), in conjunction with (3.175)3, give

rise to

da+ = n+da+ = J+F+−TNdA

= J(QF)−TNdA = J(Q−TF−T )NdA = JQF−TNdA = Qnda = Qda .

(3.196)

Now, taking the dot-product of each side of (3.196) with itself yields

(n+da+) · (n+da+) = (Qnda) · (Qnda) , (3.197)

therefore (da+)2 = da2, hence also

da+ = da , (3.198)

provided da is taken to be positive from the outset, and also

n+ = Qn . (3.199)

Example 3.4.1: A special superposed rigid-body motion
Consider the special case where χ(X, t) = X, that is, the motion is such that the body remains in
its reference configuration at all times. Now, equation (3.176)2 reduces to

x+ = QX+ c ,

and, since the velocity v vanishes, equation (3.177) becomes

v+ = ω × (x+ − c) + ċ .

A geometric interpretation of the preceding equation is demonstrated in Figure 3.21.
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EA, ei

X,x

QX

x+

ċ

v+

x+ − c

ω × (x+ − c)

R0,R R+

Figure 3.21. A rigid-motion motion superposed on the reference configuration

For this case, and in light of the vanishing deformation (F = I), equations (3.175)3, (3.190),
(3.191), (3.192) and (3.193) imply that

F+ = Q , C+ = I , B+ = i , E+ = 0 , e+ = 0 .

Lastly, examine how the various tensorial measures of deformation rate transform under

superposed rigid-body motions. Starting from the definition (3.140) of the spatial velocity

gradient, write

L+ =
∂ṽ+

∂x+
=

∂

∂x+
[Ω(x+ − c) +Qṽ + ċ]

= Ω +
∂(Qṽ)

∂x+

= Ω +
∂(Qv)

∂x

∂χ

∂x+

= Ω +Q
∂ṽ

∂x

∂

∂x+
[QT (x+ − c)]

= Ω +QLQT , (3.200)

where use is also made of (3.176), (3.180), and the chain rule. Also, the rate-of-deformation

tensor D transforms according to

D+ =
1

2
(L+ + L+T )

=
1

2
(Ω+QLQT ) +

1

2
(Ω+QLQT )T

=
1

2
(Ω+ΩT ) +Q

1

2
(L + LT )QT

= QDQT . (3.201)
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Turning to the vorticity tensor W, one may write

W+ =
1

2
(L+ − L+T )

=
1

2
(Ω+QLQT )− 1

2
(Ω+QLQT )T

=
1

2
(Ω−ΩT ) +Q

1

2
(L− LT )QT

= Ω+QWQT . (3.202)

A vector or tensor is called objective if it transforms under superposed rigid-body motions

in the same manner as its basis, when the latter is itself subject to rigid transformation due

to the superposed motion. In this case, a spatial basis {ei} would transform to {Qei}, while
the referential basis {EA} would remain unchanged, since the reference configuration is not

affected by the rigid-body motion superposed on the current configuration. The immediate

implication of objectivity is that the components of an objective vector or tensor relative to

such a basis are unchanged under a superposed rigid-body motion over their values in the

original deformed configuration.

Adopting the preceding definition of objectivity, a spatial vector field is objective if

it transform according to ( · )+ = Q( · ), while a referential one is objective if it remain

untransformed. Hence, the line element dx and the unit normal n are objective, according

to (3.194) and (3.199), while the velocity v and the acceleration a are not objective, as

seen from (3.177) and (3.182). Likewise, a spatial tensor field is objective if it transforms

according to ( · )+ = Q( · )QT . This is because its tensor basis {ei ⊗ ej} would transform

to {(Qei) ⊗ (Qej)} = Q{ei ⊗ ej}QT . Hence, spatial tensors such as B, V, e, and D are

objective, in view of equations (3.191), (3.189), (3.193), and (3.201), while L and W are

not objective, due to the form of their transformation rules in (3.140) and (3.144). As

argued in the case of vectors, referential tensor fields are objective when they do not change

under superposed rigid-body motions. Hence, C, U and E are objective, as stipulated

by (3.190), (3.186) and (3.192). It is easy to deduce that two-point tensors are objective if

they transform as ( · )+ = Q( · ) or ( · )+ = ( · )QT depending on whether the first or second

leg of the tensor is spatial, respectively. By this token, equations (3.175)3 and (3.185) imply

that the deformation gradient F and the rotationR are objective. Finally, scalars are termed

objective if they remain unchanged under superposed rigid-body motions. The infinitesimal

volume and area elements are examples of such objective tensors, according to (3.189) and

(3.198), respectively.
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In closing, note that the superposed rigid-body motion operation ( · )+ commutes with

the transposition ( · )T , inversion ( · )−1 and material time derivative
˙

( · ) operations.

3.5 Exercises

3-1. Consider a motion χ of a deformable body B, defined by

x1 = χ1(XA, t) = e−tX1 − tetX2 + tX3 ,

x2 = χ2(XA, t) = te−tX1 + etX2 − tX3 , (†)
x3 = χ3(XA, t) = etX3 ,

where all components have been taken with reference to a fixed orthonormal basis {e1, e2, e3}.

(a) Obtain directly from (†) an explicit functional form of the components of the inverse
χ
−1
t of the motion χ at a fixed time t.

(b) Determine the velocity vector v using the referential and the spatial description.

(c) Identify any stagnation points for the given motion.

(d) Determine the acceleration vector a using the referential and the spatial description.

(e) Let a scalar function φ be defined according to

φ = φ̃(x1, x2, x3, t) = ax1t ,

where a is a constant. Express φ in referential form as φ = φ̂(X1,X2,X3, t).

(f) Let a scalar function ψ be defined according to

ψ = ψ̂(X1,X2,X3, t) = bX1t ,

where b is a constant. Express ψ in spatial form as ψ = ψ̃(x1, x2, x3, t).

(g) Find the material time derivatives of φ and ψ using both their referential and spatial
representations.

(h) Find the parametric form of the path line for a particle which at time t = 0 occupies
the point X = e1 + e3. Also, plot the projection of the same path line on the (t, x1)-
and the (t, x2)-plane for t ∈ [0, 2].

3-2. A homogeneous motion χ of a deformable body B is specified by

x1 = χ1(XA, t) = X1 + αt ,

x2 = χ2(XA, t) = X2 e
βt ,

x3 = χ3(XA, t) = X3 ,

where α and β are non-zero constants, and all components are taken with reference to a
common fixed orthonormal basis {EA}.
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(a) Determine the components of the deformation gradient F and verify that the above
motion is invertible at all times.

(b) Determine the components of the velocity vector v in both the referential and spatial
descriptions.

(c) Determine the particle path line for a particle which at time t = 0 occupies a point with
position vector X = E1+E2. Sketch the particle path line on the (x1, x2)-plane for the
special case α = 1, β = 0.

(d) Determine the stream line that at time t = 1 passes through the point x = E1. Sketch
the stream line on the (x1, x2)-plane for the special case α = β = 1.

(e) Let a scalar function φ be defined according to

φ = φ̃(x, t) = c1x1x2 + c2x2 ,

where c1, c2 are constants. Find the material time derivative of φ. Under what condi-
tion, if any, is the surface defined by φ = 0 material?

(f) Determine the components of the proper orthogonal rotation tensor R and the sym-
metric positive-definite stretch tensor U, such that F = RU.

3-3. Let the velocity field v of a continuum be expressed in spatial form as

v1(xi, t) = x21x2 , v2(xi, t) = −x1x22 , v3(xi, t) = x3t ,

with reference to a fixed orthonormal basis {e1, e2, e3}.

(a) Calculate the acceleration field a in spatial form.

(b) Use Lagrange’s criterion to determine whether or not each of the following surfaces is
material:

(i) f1(xi, t) = x1 + x2 − t = 0 ,

(ii) f2(xi, t) = x1x2 − 1 = 0 .

3-4. Let the velocity components of a steady fluid motion be given by

v1(xi, t) = −ax2 , v2(xi, t) = ax1 , v3(xi, t) = b ,

with reference to a fixed orthonormal basis {e1, e2, e3}, where a and b are positive constants.

(a) Show that div v = 0.

(b) Determine the streamlines of the flow in differential form and obtain a parametric form
of the streamline passing through x = e1.

3-5. Consider the scalar function f defined as

f =
1

2
viAijvj ,

where vi are the components of the spatial velocity vector v and Aij are the components of
a constant symmetric tensor A, with reference to a fixed orthonormal basis {e1, e2, e3}.
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(a) Show that the material derivative of f is given by

ḟ =

(

∂vi

∂t
Aij +

∂vi

∂xk
Aijvk

)

vj .

(b) Evaluate ḟ , assuming that Aij = cδij , where c is a constant, and vi = xit.

3-6. Let the motion of a planar body be such that the surface σ defined by the equation

f(x1, x2, t) = tx1 − x2 + t2 − 1 = 0

is material at all times.

(a) Exploit the materiality of the surface σ to deduce the components of the velocity in the
spatial description and confirm that the motion is steady.

(b) Determine the acceleration of the body in the spatial description.

(c) Find the algebraic equation for the streamline that passes through the point with co-
ordinates (x1, x2) = (1, 1).

3-7. Consider the planar velocity field

v = ṽ(x, t) = x1(1 + 2t)e1 + x2e2 ,

relative to the fixed orthonormal basis {e1, e2, e3}.

(a) Determine the path line of a particle which occupies the point x̄ = e1+e2 at time t = 0.

(b) Determine the streamline that passes through the point x̄ = e1 + e2 at time t = 0.

(c) Determine the streak line at t = 0 that passes through the point x̄ = e1 + e2.

Plot the three lines on the same graph. Do they coincide? Do they have a common tangent
at x̄?

3-8. A homogeneous motion χ of a deformable body B is defined as

x1 = χ1(XA, t) = X1 + γX2 ,

x2 = χ2(XA, t) = X2 ,

x3 = χ3(XA, t) = X3 ,

where γ(t) is a non-negative function with γ(0) = 0, and all components are resolved on fixed
orthonormal bases {EA} and {ei} in the reference and current configuration, respectively.
This motion is termed simple shear.

(a) Determine the components of the deformation gradient F and verify that the motion is
invertible at all times.

(b) Determine the components of the right and left Cauchy-Green deformation tensors C

and B, respectively.
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(c) Obtain the principal stretches λA, A = 1, 2, 3, and an orthonormal set of vectors MA,
A = 1, 2, 3, along the associated principal directions in the reference configuration.

(d) Determine the components of the right and left stretch tensors U and V, respectively,
as well as the components of the rotation tensor R.

(e) Let B occupy a region R0 in its reference configuration, where

R0 =
{
(X1,X2,X3) | | X1 |< 1 , | X2 |< 1

}
.

Sketch the projection of the deformed configuration on the (X1,X2)-plane at any given
time t. In this sketch, include the images of infinitesimal material line elements which
in the reference configuration lie in the directions E1, E2 and 1√

2
(E1 +E2). How much

stretch and rotation has each of these line elements experienced relative to the reference
configuration?

3-9. A homogeneous motion χ of a deformable body B is specified in component form as

x1 = χ1(XA, t) = X1 + tX2 ,

x2 = χ2(XA, t) = −tX1 + X2 ,

x3 = χ3(XA, t) = X3 ,

where all components are taken with reference to fixed coincident orthonormal bases {EA}
and {ei} in the reference and current configuration, respectively.

(a) Verify that the body occupies the reference configuration at time t = 0.

(b) Determine the components of the deformation gradient F and establish that the above
motion is invertible at all times.

(c) Find the components of the proper orthogonal rotation tensor R and the symmetric
positive-definite stretch tensor U, such that F = RU.

(d) Determine the components of the velocity vector v in both the referential and spatial
descriptions.

(e) Identify the coordinates (x1, x2) of any stagnation points for all time t.

(f) Plot the path-line in the (x1, x2)-plane for a particle which at time t = 0 occupies a
point with position vector X = E1 +E2.

(g) Plot the stream-line in the (x1, x2)-plane at time t = 0 which passes through the point
x = e1 + e2.

(h) Let a scalar function φ be defined according to

φ = φ̃(x, t) = x1 − tx2 .

Find the material time derivative of φ. Is the surface defined by φ = 0 material?
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3-10. Let the displacement vector u be defined at time t for any material point X according to

u(X, t) = x − X ,

where X and x denote the position vectors of the material point X in the reference and
current configuration, respectively. Also recall that fixed orthonormal bases {EA} and {ei}
are associated with the reference and the current configuration, respectively, so that

u = uAEA = uiei .

(a) Verify that

F = I + Gradu ,

where

Gradu =
∂uA
∂XB

EA ⊗EB .

(b) Show that the Lagrangian strain tensor E can be expressed as a function of the dis-
placement vector as

E =
1

2
(Gradu + GradTu + GradTuGradu) .

(c) Verify that

F−1 = I − gradu ,

where

gradu =
∂ui
∂xj

ei ⊗ ej .

(d) Show that the Eulerian strain tensor e can be expressed as a function of the displacement
vector as

e =
1

2
(gradu + gradTu − gradTu gradu) .

3-11. Consider any two infinitesimal material line elements dX(1) = M(1)dS(1) and dX(2) = M(2)dS(2)

that originate at the same point X in the reference configuration and let Θ ∈ [0, π] be the
angle between unit vectors M(1) and M(2). The above line elements are mapped respectively
to dx(1) = m(1)ds(1) and dx(2) = m(2)ds(2) in the current configuration.

(a) Show that

cos θ =
1

λ1λ2
M(1) ·CM(2) , (†)

where θ ∈ [0, π] is the angle between unit vectors m(1) and m(2), and λ1, λ2 are the
stretches along directions M(1) and M(2), respectively.

(b) Show that, under a superposed rigid-body motion,

θ+ = θ .
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(c) Define the relative displacement gradient tensor H as

H =
∂u

∂X
= F − I

and use (†) to show that

cos θ =
1

λ1λ2

[
cosΘ +M(1) · (H+HT )M(2) +M(1) · (HTH)M(2)

]
.

3-12. Consider a continuum which undergoes a planar motion χ of the form

x1 = χ1(X1,X2, t) ,

x2 = χ2(X1,X2, t) ,

x3 = χ3(XA, t) = X3 ,

where all components are taken with reference to a fixed orthonormal basis {E1,E2,E3}.
Suppose that at a given point X̄, an experimental measurement provides the following data:

• The stretch λ1 = 0.8 of an infinitesimal material line element in the direction of the
unit vector M(1) = E1.

• The stretch λ2 = 0.6 of an infinitesimal material line element in the direction of the
unit vector M(2) = E2.

• The stretch λn = 1.2 of an infinitesimal material line element in the direction of the
unit vector M(n) = 1√

2
(E1 +E2).

(a) Using all of the above data, determine the components of the right Cauchy-Green
deformation tensor C and the relative Lagrangian strain tensor E at point X̄.

(b) Determine the stretch λ at point X̄ for an infinitesimal material line element in the
direction of the unit vector M = 1

5(3E1 + 4E2).

3-13. Consider a continuum which undergoes a planar motion χ of the form

x1 = χ1(X1,X2, t) ,

x2 = χ2(X1,X2, t) ,

x3 = χ3(XA, t) = X3 ,

where all components are taken with reference to a fixed orthonormal bases {EA} and {ei}.
Suppose that at a given material point P , an experimental measurement at time t provides
the following data:

(i) The stretch λ1 = 2.0 of an infinitesimal material line element in the direction of
the unit vector M(1) = E1.

(ii) The stretch λ2 = 1.0 of an infinitesimal material line element in the direction of
the unit vector M(2) = E2.
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(iii) The angle θ = 60o between the infinitesimal material line elements of (i) and (ii)
in the current configuration. Assume that these line elements lie in the current
configuration along the direction of unit vectors m(1) and m(2), respectively.

Using only the above data, determine the following kinematic quantities for the material
point P at time t:

(a) The components of the right Cauchy-Green deformation tensor C and the relative
Lagrangian strain tensor E.

(b) The stretch λ of an infinitesimal material line element in the direction of the unit vector
M = 1√

2
(E1 +E2).

(c) The Jacobian J of the deformation.

3-14. Consider a class of planar motions of a body, defined by

x1 = χ1(XA, t) = X1 + α(t)X2 ,

x2 = χ2(XA, t) = α(t)X2 ,

x3 = χ3(XA, t) = X3 ,

where α(t) is a given scalar-valued function of time, and all components have been taken
with respect to a fixed orthonormal basis {E1,E2,E3}.

(a) Determine the components χi,A of the deformation gradient F and place a restriction
on α which ensures that J = det(χi,A) > 0.

(b) Determine the components CAB of the right Cauchy-Green deformation tensor C.

(c) Given that the rotation tensor R for homogeneous deformations in the plane of E1 and
E2 can be expressed in the form

(RiA) =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 ,

apply the polar decomposition theorem to explicitly determine the components of the
rotation tensor R and the right stretch tensor U in terms of α.

(d) Calculate the stretch λ of a material line element lying in the reference configuration
along the direction of the unit vector

M =
1√
3
(E1 + E2 + E3) .

3-15. Consider a planar body that occupies a square region R0 in the reference configuration.
Let the current configuration R be obtained by uniformly stretching the body along the
horizontal axis and subjecting it to a global 90-degree counterclockwise rotation, as in the
figure below.
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R

R0

X1, x1

X2, x2

2

4

4

8

(a) Deduce an expression for the coordinates (x1, x2) of an arbitrary point X at time t as
a function of its coordinates (X1,X2) in the reference configuration.

(b) Determine the deformation gradient tensor F for any point at time t and calculate the
Jacobian J .

(c) Calculate the components of the right Cauchy-Green deformation tensor C and the left
Cauchy-Green deformation tensor B.

(d) Find the components of the polar factors U, V, and R.

(e) Calculate the stretch λ of a line element along the vector M = 1√
2
(E1 + E2) in the

reference configuration.

3-16. Consider a deformable body which in the reference configuration has a rectangular cross-
section of height h and width L, as in the following figure. At a fixed time t, the cross-section
is bent into an annulus of constant thickness h and average radius R = L/2π, such that:

• All straight material lines parallel to theX1-axis in the reference configuration transform
to circular arcs in the current configuration, and

• All straight material lines parallel to the X2-axis in the reference configuration remain
straight and radial in the current configuration.

Also, let the motion of the body be described by means of orthonormal basis vectors EA

along the coinciding XA- and xi-axes of the figure.

(a) Obtain an explicit expression for the coordinates (x1, x2) of an arbitrary point X at
time t as a function of its coordinates (X1,X2) in the reference configuration.

(b) Determine the components of the deformation gradient tensor F for any point of the
cross-section at time t.
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R

reference configuration

current configuration

x1, X1

L

x2, X2

h

(c) Determine the components of the right Cauchy-Green tensor C and the Lagrangian
strain tensor E at time t as a function of X.

(d) At the same time t, calculate the stretch λ of a material line element located in the
reference configuration on the centerline (that is, at X2 = 0) and pointing along the
direction of the unit vector M1, where

M1 = E1 .

(e) Repeat part (d) for an arbitrary material line element lying in the reference configuration
along the direction of the unit vector M2, where

M2 = E2 .

What can you conclude about the stretch of this material line element?

(f) Determine the components of the left Cauchy-Green tensor B and the Eulerian strain
tensor e at time t as a function of X.

(g) With reference to the polar decomposition theorem, obtain the rotation tensor R and
the stretch tensors U and V at time t.

3-17. Prove the polar decomposition theorem for a tensor F that satisfies detF > 0.
Hint: Start by observing thatC = FTF is necessarily positive-definite, then apply the spectral
representation theorem to C and calculate its square root.

3-18. Recall that any rotation tensor R can be represented by Rodrigues’ formula (3.113) and let
the components of a tensor Q be written with respect to a fixed orthonormal basis as

[Qij ] =







1√
3

1√
3

− 1√
3

− 1√
2

1√
2

0

1√
6

1√
6

√
2
3






.

(a) Verify that Q is proper orthogonal (that is, a rotation tensor).

(b) Determine the angle of rotation θ and the unit eigenvector p of (3.113) for Q.
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3-19. Recall Rodrigues’ formula for a rotation tensor Q in (3.113) and define a skew-symmetric
tensor K as

K = r⊗ q− q⊗ r .

(a) Show that the axial vector of K coincides with the unit eigenvector p of the tensor Q.

(b) Verify that the alternative version of Rodrigues’ formula

Q = I+ sin θK+ (1− cos θ)K2

holds true.

3-20. Although it is possible to obtain closed-form expressions of the polar factors R and U (or V)
as functions of a given non-singular F, it is much simpler to deduce them numerically using
an efficient iterative scheme. In particular, it can be shown that the iteration

U(n+1) =
1

2
(U(n) +U−1

(n)C) , n = 0, 1, . . .

satisfies limn→∞U(n) = U, when starting with an initial guess U(0) = I. Subsequently, R
can be calculated from R = FU−1. Implement this iterative method in a computer program
and test it on the deformation gradients obtained in Exercise 3-8 (consider time t1, where
γ(t1) = 1) and Exercise 3-16 (take L = 10, h = 1, and X2 = 0.5).

3-21. Consider a body B of infinite domain, which at time t = 0 contains a spherical cavity of
radius A centered at a point O, as in the figure below. Without loss of generality, let the two
orthonormal bases EA and ei coincide and originate at O. At time t = 0 an explosion occurs
inside the cavity and produces a spherically symmetric motion of the form

x =
f(R, t)

R
X , (†)

where R =
√
XAXA is the magnitude of the position vector X for an arbitrary point P in

the reference configuration. Since it can be easily verified from (†) that the cavity remains
spherical at all times, let its radius be denoted by a(t).
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(a) Determine the deformation gradient tensor F.

(b) Find the velocity and acceleration fields in the referential description.

(c) If the motion is assumed isochoric, show that

f(R, t) = (R3 + a3 − A3)1/3 .

and represent the velocity and acceleration fields in the spatial description.

3-22. A planar motion χ of a deformable body B is specified in component form by

x1 = χ1(XA, t) = αX1 − βX1X2

x2 = χ2(XA, t) = βX1 + αX2 (†)
x3 = χ3(XA, t) = X3 ,

where α, β, γ are functions of time only, such that α(0) = 1, β(0) = 0 and α > 0 for all time.
Also, all components in (†) are taken with respect to coincident fixed orthonormal bases EA

and ei. Let the body in the reference configuration (t = 0) occupy a unit cube as in the
figure below.

2

3

1

x  ,X

x  ,X

x  ,X1

2

3

O

(a) Determine the components of the deformation gradient F.

(b) Place any additional restrictions on α and β, such that the motion be invertible for all
points and times.

(c) Find the stretch of a line element located at X1 = X2 = X3 = 0 along the direction
M = 1√

2
(E1 +E2).

(d) Find the total volume of the body in the current configuration.
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3-23. Consider a deformable body which at time t = 0 occupies the unit cube depicted in the
figure below. The body is subjected to a motion whose deformation gradient is specified in
component form relative to a fixed orthonormal basis as

[FiA] =





1 α 0
0 β 0
0 0 γ



 ,

where α, β and γ are functions of time only, such that βγ > 0 at all times and α(0) = 0,
β(0) = γ(0) = 1. Notice that the prescribed motion is spatially homogeneous (i.e., the
deformation gradient is independent of position in the reference configuration).

A
B

C

D

E

O

x1, X1

x2, X2

x3, X3

Determine the following geometric quantities in the current configuration, as functions of α,
β and γ:

(a) The length l of the material line element OE.

(b) The cosine of the angle θ between the material line elements OA and OC.

(c) The area a of the material face BCDE.

(d) The total volume v of the body.

3-24. Let a deformable body in the reference configuration occupy a region R0 comprised of two
subregions R1 and R2 separated from each other by a plane surface σ with unit normal E3,
as in the following figure.

(i) How do material line elements along E1 and E2 deform under the effect of the defor-
mation gradient F?

(ii) Assume the deformation gradient is constant in each subregion with values F1 and F2,
respectively. Also, assume that the motion χ(x, t) of the body is continuous in the
variable x throughout R0. Derive two algebraic conditions that need to be satisfied
by F = F1 and F = F2 stemming from the manner in which these tensors operate on
infinitesimal line elements which lie on the plane σ along the directions of the orthogonal
unit vectors E1 and E2 depicted in the figure.
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R1 R2

σ

e3,E3

e1,E1

e2,E2

(iii) Deduce that F1 and F2 must be related according to

F2 = F1 + g ⊗E3 ,

where g is any vector.

Hint: Resolve F1 and F2 on the coincident orthonormal bases (E1,E2,E3) and (e1, e2, e3),
and exploit the results of parts (i) and (ii).

3-25. Suppose that a homogeneous motion χ of a deformable body B is specified by

x1 = χ1(XA, t) = X1 + t2X3 ,

x2 = χ2(XA, t) = X2 − tX3 ,

x3 = χ3(XA, t) = X3 ,

where all components are taken with reference to a fixed orthonormal basis EA and ei in the
reference and current configuration, respectively.

(a) Determine the components of the deformation gradient F and verify that the above
motion is isochoric (i.e., detF = 1).

(b) Determine the components of the velocity v in both the referential and spatial descrip-
tions. Is the motion steady?

(c) Determine the components of the spatial velocity gradient L, the rate of deformation
D and the vorticity W.

(d) Calculate the pathline for a particle which at time t = 0 occupies a point with position
vector X = E1 +E2 +E3. Sketch this pathline on the (x1, x2)-plane.

(e) Calculate the streamline that passes through x = e1 − e3 at time t = 1. Sketch this
streamline on the (x1, x2)-plane.

(f) Calculate the material derivative of ln ρ, where ρ is the mass density in the current
configuration of the body.
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3-26. Consider a planar motion χ of a deformable body B, of the general form

x1 = X1 ,

x2 = χ2(X2,X3, t) , (†)
x3 = χ3(X2,X3, t) ,

where all components are taken with reference to a fixed orthonormal basis {e1, e2, e3}. Also,
recall Rodrigues’ formula (3.113) for the parametrization of a proper orthogonal tensor.

(a) Establish that for the planar motion as in (†), the components of the rotation tensor R
at a given point X and time t can be written as

[RiA] =





1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 .

(b) Recalling the symmetry of the right stretch U, show that

tan θ =
F32 − F23

F22 + F33
,

where FiA are the components of the deformation gradient F.

(c) Use the result of part (b) to obtain the components of the right stretch tensor U in the
form

[UAB] =
1

F





F 0 0
0 J + F 2

22 + F 2
32 F22F23 + F32F33

0 F22F23 + F32F33 J + F 2
23 + F 2

33



 ,

where J = detF and F =
√

(F22 + F33)2 + (F32 − F23)2.

3-27. Show that at any given time t, the deformation gradient F at any point X can be uniquely

decomposed into

F = VsphFdev ,

where Vsph corresponds to pure stretch of equal magnitude in all directions, while Fdev

induces volume-preserving (or deviatoric) deformation.

3-28. A generalized Lagrangian strain is defined as

E(m) =

{
1
m(Cm/2 − I) if m 6= 0
1
2 lnC if m = 0

,

where I is the identity tensor and m is a real number. In the above,

Cm/2 =

3∑

I=1

λmI MI ⊗MI
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and

lnC =

3∑

I=1

(ln λ2I)MI ⊗MI ,

where λI , I = 1-3, are the principal stretches, while the vectors MI , I = 1-3, lie along the
associated principal directions and form an orthonormal basis in E3.

(a) Verify that E(2) coincides with the Lagrangian strain tensor E.

(b) Argue that E(−2) corresponds (in a certain sense that you should precisely identify) to
the Eulerian (Almansi) strain tensor e.

(c) Show that
lim
m→0

E(m) = E(0) .

3-29. Recall that the scalar triple product [a,b, c] = a · (b× c) of vectors a, b and c satisfies

a · (b× c) = det
[
[ai] , [bi] , [ci]

]
. (†)

(a) Use (†) to show that

J =
1

6
ǫijk ǫABC xi,A xj,B xk,C , (‡)

where J = detF and ǫijk, ǫABC are the components of the permutation symbol.

(b) Use (‡) to deduce that
∂J

∂xi,A
= JXA,i (♯)

or, in direct notation,
∂J

∂F
= JF−T .

The tensor F∗ = JF−T is termed the adjugate of F.

(c) Use (♯) to show that
J̇ = Jvi,i = J divv .

3-30. Let the components of a velocity field v be specified with reference to an orthonormal basis
ei as

v1 = ax2x3 , v2 = −ax1x3 , v3 = bx3 , (†)
where a and b are constants.

(a) Determine the components of the velocity gradient L.

(b) Obtain from (a) the components of the rate of deformation tensor D and the vorticity
tensor W.

(c) Find the components of the axial vector w associated with the vorticity tensor obtained
in (b).

(d) What restrictions should be placed on a and b, so that the motion associated with the
velocity field (†) be (i) isochoric, or (ii) irrotational?
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3-31. (a) Show that
˙

B−1 = −(B−1L + LTB−1) ,

where B is the left Cauchy-Green strain tensor and L is the spatial velocity gradient
tensor.

(b) Use the result of part (a) to verify that

D = ė + LTe + eL ,

where e is the relative Eulerian (Almansi) strain tensor and D is the rate of deformation
tensor.

3-32. Consider two infinitesimal material line elements dX1 and dX2 in the reference configuration,
which are aligned with the unit vectors M and N, respectively.

(a) Show that

λMλN m · n = M ·CN ,

where λM , λN are the stretches of dX1 and dX2 in the current configuration, m, n
are the unit vectors aligned to the same two infinitesimal material line elements in the
current configuration, and C is the right Cauchy-Green deformation tensor.

(b) If θ is the angle between the unit vectors m and n, deduce the relation

(

λ̇M
λM

+
λ̇N
λN

)

cos θ − θ̇ sin θ = 2m ·Dn (no summation on M,N) ,

where D is the rate-of-deformation tensor.

(c) If the unit vectors m and n are aligned to the unit vectors e1 and e2 of the orthonormal
basis {ei}, argue that the expression in part (b) reduces to

−θ̇ = 2D12 .

Also, comment on the physical interpretation of the off-diagonal components of the
tensor D.

3-33. (a) Let dX = M dS be an infinitesimal material line element in the reference configuration
of a given body, and assume that it is mapped by the motion χ to a line element
dx = m ds in the current configuration, where both M and m are unit vectors. Show
that

ḋs = m ·Dm ds

and

ṁ = Lm − {m · Lm}m ,

where D is the rate of deformation tensor and L is the spatial velocity gradient tensor.
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(b) Let dA = N dA be an infinitesimal area element on a plane normal to the unit vector N
in the reference reference configuration of a given body, and assume that it is mapped
by the motion χ to an area element da = n da on a plane normal to the unit vector n

in the current configuration. Show that

ḋa = {trD − n ·Dn} da

and

ṅ = {n · Ln}n − LTn .

3-34. Let the velocity field of a continuum be given in spatial form as

v1 = x2x3, v2 = −x3x1, v3 = x1x2 .

(a) Show that the motion of the continuum is isochoric.

(b) Find the components of the spatial velocity gradient tensor L, as well as the components
of the rate of deformation tensor D and the vorticity tensor W.

(c) Determine the rate of change of the logarithmic stretch for a material line element which
in the current configuration lies in the direction of the unit vectorm = 1√

3
(e1 + e2 + e3).

(d) Determine the rate of change ṁ of the orientation for a material line element which in
the current configuration lies in the direction of the unit vector m defined in part (c).

3-35. Recall that the velocity gradient tensor L can be uniquely decomposed into the (symmetric)
rate-of-deformation tensor D and the (skew-symmetric) vorticity tensor W, such that

L = D + W .

(a) Show that

Dv =
1

2
grad (v · v) + Wv ,

where v is the velocity vector. Use the result of part (a) and the definition of the
material time derivative to establish the identity

a =
∂v

∂t
+

1

2
grad (v · v) + 2w × v ,

where a is the acceleration vector and w the vorticity vector (i.e., the axial vector
of W).

3-36. Recall that according to the right polar decomposition, the deformation gradient tensor can
be written as

F = RU ,

where R is a proper orthogonal tensor and U is a symmetric positive-definite tensor.
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(a) Show that the spatial velocity gradient tensor can be expressed as

L = Ω + RU̇U−1RT , (†)

where Ω = ṘRT .

(b) Use (†) to obtain expressions for the rate of deformation tensor D and the vorticity
tensor W.

(c) Assume that at a given time t = t̄, the body passes through its reference configuration,
so that for any material point with position vector X in the reference configuration,
x = χ(X, t̄) = X. Show that

D(x, t̄) = U̇

and
W(x, t̄) = Ṙ .

3-37. Let v = ṽ(x, t) be the spatial velocity for a body B and recall that the acceleration a may
be expressed in spatial form as

a =
∂ṽ

∂t
+ Lv .

(a) Use the preceding expression for the acceleration a to show that

div a =
∂

∂t
(divv) + divLT · v + LT · L ,

where L is the spatial velocity gradient tensor.

(b) Show that

˙divv =
∂

∂t
(div v) + divLT · v ,

where ˙div v denotes the material time derivative of divv.

(c) Use the results of parts (a) and (b) to conclude that

div a = ˙divv + LT · L .

(d) Conclude that the expression in part (c) may be alternatively written as

div a = ˙divv +D ·D−W ·W ,

where D is the rate-of-deformation tensor and W is the vorticity tensor.

3-38. Consider motions χ and χ
+ which differ by a superposed rigid-body motion, so that for any

particle that occupies point X in the common reference configuration,

x = χ(X, t)

and
x+ = χ

+(X, t)
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at all times t. Then, it has been shown that

x+ = Q(t)x + c(t) ,

where Q(t) is a proper orthogonal tensor and c(t) is a vector in E3.

(a) Recall that an infinitesimal material line element dX = M dS in the reference configura-
tion is mapped by the motion χ to a line element dx = m ds in the current configuration.
Show that under a superposed rigid-body motion

m+ = Qm,

and
ds+ = ds .

(b) How do the following tensor quantities transform under superposed rigid motions? In-
dicate whether or not each quantity is objective.
(i) C2, (ii) B2, (iii) Ḟ, (iv) Ċ, (v) Ḃ.

3-39. Show that, under superposed rigid motions, the ‘div’ and ‘curl’ operators “transform” as

div+ a = div (QTa) , curl+ a = Q curl (QTa) ,

for any vector a in E3.
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Chapter 4

Physical Principles

4.1 The divergence and Stokes’ theorems

By way of background, first review the divergence theorem for real-, vector- and tensor-

valued functions. To this end, let P ⊂ E3 be an open and bounded region with smooth

boundary ∂P. Note that the region P is bounded if it can be fully enclosed by a sphere

of finite radius. Also, the boundary ∂P is smooth if it can be described by a continuously

differentiable function of two surface coordinates, which, in turn, implies that a unit normal n

to ∂P is well-defined.

Next, define a real-valued function φ : P → R, a vector-valued function v : P → E3, and

a tensor-valued function T : P → L(E3, E3). All three functions are assumed continuously

differentiable. Then, the gradients of φ and v satisfy

∫

P
gradφ dv =

∫

∂P
φn da , (4.1)

and ∫

P
gradv dv =

∫

∂P
v ⊗ n da . (4.2)

In addition, the divergences of v and T satisfy

∫

P
div v dv =

∫

∂P
v · n da , (4.3)

and ∫

P
divT dv =

∫

∂P
Tn da . (4.4)
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Equation (4.3) expresses the classical divergence theorem, while the other three identities are

derived from this theorem. Indeed, identity (4.4) is deduced by dotting the left-hand side

with any constant vector c and using (2.79) and (4.3). This leads to
∫

P
divT dv · c =

∫

P
divT · c dv =

∫

P
div(TTc) dv =

∫

∂P
(TTc) · n da

=

∫

∂P
Tn · c da =

∫

∂P
Tn da · c . (4.5)

Since c is arbitrary, equation (4.4) follows immediately. Next, (4.1) may be deduced from (4.4)

by setting T = φi, so that
∫

P
div(φi) dv =

∫

P
gradφ dv

=

∫

∂P
φn da . (4.6)

Lastly, (4.2) is obtained from (4.1) by taking any constant vector c and writing with the aid

of (2.21) and (2.71),

[∫

P
gradv dv

]T

c =

∫

P
(gradv)Tc dv =

∫

P
grad(v · c) dv

=

∫

∂P
(v · c)n da =

∫

∂P
(n⊗ v)c da =

[∫

∂P
n⊗ v da

]

c , (4.7)

which, owing to the arbitrariness of c, proves the identity.

Consider next a closed non-intersecting curve C which is parametrized by a scalar τ ,

0 ≤ τ ≤ 1, so that the position vector of a typical point on C is c(τ). Also, let A be an

open surface bounded by C, see Figure 4.1. Clearly, any point on A possesses two equal

and opposite unit vectors, each pointing outward to one of the two sides of the surface. To

eliminate the ambiguity, choose one of the sides of the surface and denote its outward unit

normal by n. This side is chosen so that c(τ̄ )×c(τ̄ + dτ) points toward it, for any τ̄ ∈ [0, 1).

If now v is a continuously differentiable vector field, then Stokes’1 theorem states that
∫

A
curlv · n dA =

∫

C
v · dx . (4.8)

The integral on the right-hand side of (4.8) is called the circulation of the vector field v

around C. The circulation is the (infinite) sum of the tangential components of v along C.
If v is identified as the spatial velocity field, then, in light of (3.157), Stokes’ theorem

states that the circulation of the velocity around C equals twice the integral of the normal

component of the vorticity vector on any open surface that is bounded by C.
1Sir George Gabriel Stokes (1819-1903) was a British mathematician.
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C

A

Figure 4.1. A surface A bounded by the curve C.

4.2 The Reynolds’ transport theorem

Let P ⊂ R be an open and bounded region in E3 with smooth boundary ∂P and assume

that the same particles that occupy this region at time t also occupy an open and bounded

region P0 ⊂ R0 with smooth boundary ∂P0 at a fixed reference time t0, see Figure 4.2.

In addition, let a real-valued field φ be defined by a referential function φ̂ : P0 × R 7→ R

χ

P ∂PP0 ∂P0

R
∂RR0

∂R0

Figure 4.2. A region P with boundary ∂P and its image P0 with boundary ∂P0 in the reference

configuration.

or a spatial function φ̃ : P × R 7→ R, such that Both φ̂ and φ̃ are assumed continuously

differentiable in both of their variables. In the forthcoming discussion of balance laws, it is

important to be able to manipulate expressions of the form

d

dt

∫

P
φ̃ dv , (4.9)

namely, material time derivatives of volume integrals defined over some open and bounded

subset of the current configuration.
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Example 4.2.1: Rate of change of volume

Consider the integral in (4.9) for φ = 1. Here,
d

dt

∫

P
dv =

d

dt
vol{(P)}, which is the rate

of change at time t of the total volume of the region occupied by the material particles that
occupy P at time t.

Before evaluating (4.9), it is important to observe that the time differentiation and spatial

integration operations cannot be directly interchanged, because the region P over which the

integral is evaluated is itself a function of time. To circumvent this difficulty one may proceed

as follows: first, transform (“pull-back”) the integral to the (fixed) reference configuration

with the aid of (3.128); next, interchange the differentiation and integration operations

and evaluate the time derivative of the integrand; and, finally, transform (“push-forward”)

the integral back to the current configuration again with the aid of (3.128). Adopting

this approach and also recalling the identity for the material time derivative of J from

Exercise 3-29(c) leads to

d

dt

∫

P
φ̃ dv =

d

dt

∫

P0

φ̂J dV

=

∫

P0

d

dt
[φ̂J ] dV

=

∫

P0

[

∂φ̂

∂t
J + φ̂

∂J

∂t

]

dV

=

∫

P0

(φ̇J + φ̂J divv) dV

=

∫

P0

(φ̇+ φ̂ div v)J dV

=

∫

P
(φ̇+ φ̃ div v) dv . (4.10)

This result is known as the Reynolds2’ transport theorem. It is easy to see that the theorem

applies also to vector and tensor fields without any modifications.

A slightly different derivation of the Reynolds’ transport theorem is possible, which ac-

counts directly for the dependence of P on time and does not depend on the existence of a

2Osborne Reynolds (1842–1912) was a British mechanician.
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reference configuration. Specifically, appealing only to (3.145), one may write

d

dt

∫

P
φ̃ dv =

∫

P
[φ̇ dv + φ̃ ḋv]

=

∫

P
[φ̇ dv + φ̃(divv dv)]

=

∫

P
(φ̇+ φ̃ div v) dv . (4.11)

To interpret the Reynolds’ transport theorem, note that the left-hand side of (4.10) is

the rate of change of the integral of φ over the region P, when following the set of particles

that happen to occupy P at time t. The right-hand side of (4.10) consists of the sum of two

terms. The first one is due to the rate of change of φ for all particles that happen to occupy

the region P at time t. The second one is due to the rate of change of the volume occupied

by the same particles as they travel with velocity v.

The Reynolds’ transport theorem can be restated in a number of equivalent forms. One

such form is obtained from (4.10) by appealing to the definition of the material time derivative

in (3.19) and the divergence theorem (4.3) as

d

dt

∫

P
φ̃ dv =

∫

P
(φ̇+ φ divv) dv

=

∫

P

[

∂φ̃

∂t
+

∂φ̃

∂x
· v + φ divv

]

dv

=

∫

P

[

∂φ̃

∂t
+ div(φ̃v)

]

dv

=

∫

P

∂φ̃

∂t
dv +

∫

∂P
φv · n da . (4.12)

An alternative interpretation of the theorem is now in order. Here, the right-hand side

of (4.12) consists of the sum of two terms. The first term is the rate of change of φ at time t

for all points that form the fixed region P. The second term is the flux of φ as particles

exit P across ∂P with normal velocity v · n.
Starting from (4.12), note that

∫

P

∂φ̃

∂t
dv =

∂

∂t

∫

P̄
φ̃ dv, where P̄ is a fixed region in space

which coincides with P at time t. The preceding relation holds true since
∂φ̃(x, t)

∂t
is precisely

the rate of change of φ at time t for fixed position x in space. Hence, upon evaluating the

integral of this term, the region P may be also taken to be fixed in space and equal to P̄ .
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Therefore, one may alternatively express (4.12) as

d

dt

∫

P
φ̃ dv =

∂

∂t

∫

P̄
φ̃ dv +

∫

∂P̄
φ̃v · n da . (4.13)

Now, the first term on the right-hand side of (4.13) is the rate of change of φ in the fixed

region P̄, while the second term is the rate at which the volume of the particles that occupy P̄
at time t, weighted by φ, changes as the particles exit P̄ across ∂P̄ .

Example 4.2.2: Area integral representing volume change
Consider again the special case φ̃(x, t) = 1, which corresponds to the transport of volume.
Here,

d

dt

∫

P
dv =

∫

P
div v dv =

∫

∂P
v · n da .

This means that the rate of change of the volume occupied by the same material particles
equals the boundary integral of the normal component of the velocity v ·n of ∂P, that is, the
rate at which the volume of P changes as the particles exit across the boundary ∂P̄ of the
fixed region P̄ which equals to P at time t.

4.3 The localization theorem

Another result with important implications in the study of balance laws is presented here by

way of background. Let φ̃ : R× R → R be a function such that φ = φ̃(x, t), where R ⊂ E3.

Also, let φ̃ be continuous in the spatial argument. Then, assume that
∫

P
φ̃ dv = 0 , (4.14)

for all P ⊂ R at a given time t. The localization theorem states that this is true if, and only

if, φ̃ = 0 everywhere in R at time t.

To prove this result, first note that the “if” portion of the theorem is straightforward,

since, if φ̃ = 0 in R, then (4.14) holds trivially true for any P ∈ R. To prove the converse,

note that continuity of φ̃ in the spatial argument x at a point x0 ∈ R means that for any

given time t and every ε > 0, there is a δ = δ(ε) > 0, such that

|φ̃(x, t)− φ̃(x0, t)| < ε , (4.15)

provided that

|x− x0| < δ(ε) . (4.16)
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Now proceed by contradiction and assume that there exists a point x0 ∈ R, such that, at

any given time t, φ̃(x0, t) = φ0 > 0. Then, invoking continuity of φ̃ in x, there exists a

δ = δ(
φ0

2
) > 0, such that

|φ̃(x, t)− φ̃(x0, t)| = |φ̃(x, t)− φ0| <
φ0

2
, (4.17)

whenever

|x− x0| < δ(
φ0

2
) . (4.18)

Next, define the region Pδ that consists of all points of R for which |x − x0| < δ(
φ0

2
), see

R

Pδx0

Figure 4.3. The domain R with a spherical subdomain Pδ centered at x0.

Figure 4.3. This is a sphere of radius δ in E3 with volume vol(Pδ) =

∫

Pδ

dv > 0. It follows

from (4.17)2 that φ̃(x, t) >
φ0

2
everywhere in Pδ. This, in turn, implies that

∫

Pδ

φ̃ dv >

∫

Pδ

φ0

2
dv =

φ0

2
vol(Pδ) > 0 , (4.19)

which contradicts the assumption in (4.14). Therefore, the localization theorem holds true.

The localization theorem can be also proved with equal ease for vector- and tensor-valued

functions which satisfy the aforementioned properties of the real-valued function φ.

4.4 Mass and mass density

Consider a body B and take any arbitrary part S ⊂ B, as in Figure 3.1. Define a set

function m : S 7→ R with the following properties:

(i) m(S ) ≥ 0, for all S ⊆ B (that is, m non-negative),
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(ii) m(∅) = 0,

(iii) m(∪∞
i=1Si) =

∞∑

i=1

m(Si), where Si ⊂ B, i = 1, 2, . . . , and Si ∩ Sj = ∅, if i 6= j (that

is, m countably additive3).

A function m with the preceding properties is called a measure on B. Assume here that

there exists such a measure m and refer to m(B) as the mass of body B and m(S ) as

the mass of the part S of B. In other words, consider the body as a set of particles with

positive mass.

Recall next that at time t the body B occupies a region R ⊂ E3 and the part S occupies

a region P. Assuming that m is an absolutely continuous measure, it can be established that

there exists a unique function ρ = ρ(x, t), such that, for any function f = f̌(P, t) = f̃(x, t),

one may write
∫

B

f̌ dm =

∫

R
f̃ρ dv (4.20)

and
∫

S

f̌ dm =

∫

P
f̃ρ dv . (4.21)

The function ρ(x, t) > 0 is termed the mass density.4 The mass density of a particle P

occupying point x in the current configuration may be thought of as being derived by a

limiting process as

ρ(x, t) = lim
δ→0

m(Sδ)

vol(Pδ)
, (4.22)

where Pδ ⊂ E3 denotes a sphere of radius δ > 0 centered at x and Sδ the part of the body

that occupies Pδ at time t, see Figure 4.4.

As a special case, one may consider the function f = 1, so that (4.20) and (4.21) reduce

to
∫

B

dm =

∫

R
ρ dv = m(B) (4.23)

and
∫

S

dm =

∫

P
ρ dv = m(S ) . (4.24)

3A physical quantity that is additive for non-intersecting parts of the body is also called extensive.
4The existence of ρ is a direct consequence of a classical result in measure theory, known as the Radon-

Nikodym theorem.
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Pδ

R

Sδ

B

x
δ

Figure 4.4. A limiting process used to define the mass density ρ at a point x in the current

configuration.

An analogous definition of mass density can be furnished in the reference configuration,

where there is a unique function ρ0 = ρ0(X), such that for any function f = f̌(P, t) = f̂(X, t),

∫

B

f̌ dm =

∫

R0

f̂ρ0 dV (4.25)

and
∫

S

f̌ dm =

∫

P0

f̂ρ0 dV . (4.26)

Here, the mass density ρ0(X) in the reference configuration may be again defined by a

limiting process, such that at a given point X,

ρ0(X) = lim
δ→0

m(Sδ)

vol(P0,δ)
, (4.27)

where P0,δ ⊂ E3 denotes a sphere of radius δ > 0 centered at X and Sδ the part of the body

that occupies P0,δ at time t0. Also, as in the spatial case, one may write

∫

B

dm =

∫

R0

ρ0 dV = m(B) (4.28)

and
∫

S

dm =

∫

P0

ρ0 dV = m(S ) . (4.29)

The mass density ρ0 should not be confused with the referential description of the mass

density ρ at time t, that is, ρ = ρ̂(X, t) 6= ρ0(X). Indeed, ρ0 it the mass density of a material

particle that occupies the position X at time t0.
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4.5 The principle of mass conservation

The principle of mass conservation (also referred to as principle of balance of mass) states

that the mass of any material part S of the body remains constant at all times, namely

that
d

dt
m(S ) = 0 (4.30)

or, upon recalling (4.24),
d

dt

∫

P
ρ dv = 0 . (4.31)

The preceding equation represents an integral form of the principle of mass conservation in

the spatial description. Using the Reynolds’ transport theorem in the form (4.10), the above

equation may be also written as

∫

P
(ρ̇+ ρ div v) dv = 0 . (4.32)

Assuming that the integrand in (4.32) is continuous and recalling that S (hence, also P) is

arbitrary, it follows from the localization theorem that

ρ̇+ ρ divv = 0 . (4.33)

Equation (4.33) constitutes the local form of the principle of mass conservation in the spatial

description. Upon invoking (3.19), this may be readily rewritten as

∂ρ

∂t
+

∂ρ

∂x
· v + ρ divv = 0 , (4.34)

hence, also as
∂ρ

∂t
+ div (ρv) = 0 . (4.35)

The partial time derivative in (4.35) quantifies the rate of change of mass at a fixed point in

space while the divergence term quantifies the rate of change of mass due to the (local) dif-

ference between outflow and inflow. This interpretation justifies the frequently encountered

reference to (4.35) as the mass continuity equation.

An alternative form of the mass conservation principle may be obtained by recalling

equations (4.24) and (4.29), from which it follows that

m(S ) =

∫

P
ρ dv =

∫

P0

ρ0 dV . (4.36)
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Recalling also (3.128), one concludes that

∫

P0

ρJ dV =

∫

P0

ρ0 dV . (4.37)

This is an integral form of the principle of mass conservation in the referential description.

From it, one finds that ∫

P0

(ρJ − ρ0) dV = 0 . (4.38)

Taking into account the arbitrariness of P0, the localization theorem may be invoked again

to yield a local form of mass conservation in referential description as

ρ0 = ρJ . (4.39)

The positivity of the Jacobian J asserted in Section 3.2 guarantees that the mass density ρ

in (4.39) remains always positive, given a positive density ρ0 in the reference configura-

tion.

Example 4.5.1: Mass conservation in volume-preserving flow
In a volume-preserving flow of a material with uniform density, conservation of mass reduces

to
∂ρ

∂t
= 0, since J̇ = J div v = 0 (see Exercise 3-29(c)) necessarily implies that div v = 0.

Hence, recalling (4.13) and (4.31), one may write

d

dt

∫

P
ρ dv =

∫

P

∂ρ

∂t
dv +

∫

∂P
ρv · n da =

∫

∂P
ρv · n da = 0 .

This implies that in a volume-preserving flow the net flux of mass across the boundary ∂P is
zero.

4.6 The principles of linear and angular momentum

balance

Once mass conservation is established, the principles of linear and angular momentum are

postulated to describe the motion of continua. These two principles originate in the pioneer-

ing work of Newton and Euler.

By way of introduction, it is instructive to briefly revisit Newton’s three laws of motion, as

postulated for particles in 1687. The first law states that a particle stays at rest or continues
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to travel at constant velocity unless an external force acts on it; the second law states that

the total external force on a particle is proportional to the rate of change of the momentum

of the particle; and, the third law states that every action (understood as a force acting

on a particle) has an equal and opposite reaction. As Euler recognized, Newton’s three

laws of motion, while sufficient for the analysis of single particles or systems of particles,

are not suitable for the study of rigid and deformable continua. Rather, he postulated a

linear momentum balance principle (akin to Newton’s second law) and a separate angular

momentum balance principle (which does not exist as such in Newton’s theory). The latter

can be easily motivated from the analysis of systems of particles.

To formulate Euler’s two balance laws, first define the linear momentum of the part of

the body that occupies the infinitesimal volume element dv at time t as dmv, where dm

is the mass of dv. Also, define the angular momentum of the same part relative to the

origin of a fixed basis {ei} as x × (dmv), where x is the position vector associated with

the infinitesimal volume element, see Figure 4.5. Similarly, define the linear and angular

momenta of the part S which occupies a region P at time t as
∫

S
v dm and

∫

S
x × v dm,

respectively. Clearly, the angular momentum depends on the choice of the origin from which

one draws the position vector x.

O

x

v

Figure 4.5. Angular momentum of an infinitesimal volume element.

Next, admit the existence of two types of external forces acting on the body at any time t.

These are: (a) a body force per unit mass (e.g., gravitational, magnetic) b = b(x, t) which

acts on the particles that comprise the domain of the body, and (b) a contact force per unit

area t = t(x, t;n) = t(n)(x, t), which acts on the particles that lie on boundary surfaces

and depend on the orientation of the surface on which they act through the outward unit

normal n to the surface.5 The force t(n) is alternatively referred to as the stress vector or

5The notation t = t(x, t;n) = t(n)(x, t) is, in fact, specifically intended to emphasize the dependence of t

on n.
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the traction vector. It is important to emphasize here that the external forces are a central

conceptual construct in continuum mechanics, by which one describes the interactions of the

body with its surrounding environment. These interactions occur either through its domain

(in the case of the body force) or its boundary (in the case of the contact force). The

preceding assumption on the nature of the external forces constitutes a mild simplification.

In a more general theory, one would have also admitted the existence of body moment per

unit mass and a contact moment per unit area. However, these so-called distributed couples

(tantamount to the classical force couples) are ignored here.

The principle of linear momentum balance states that the rate of change of linear mo-

mentum for any part S of the body that occupies the region P at time t equals the total

external forces acting on this part. In mathematical terms, this means that

d

dt

∫

S

v dm =

∫

S

b dm+

∫

∂P
t(n) da (4.40)

or, equivalently, in view of (4.21),

d

dt

∫

P
ρv dv =

∫

P
ρb dv +

∫

∂P
t(n) da . (4.41)

Using the Reynolds’ transport theorem in the form (4.10) and also invoking conservation of

mass in the form (4.33), the left-hand side of the equation can be written as

d

dt

∫

P
ρv dv =

∫

P

d

dt
(ρv) dv +

∫

P
ρv div v dv

=

∫

P
(ρ̇v + ρv̇) dv +

∫

P
ρv divv dv

=

∫

P
[(ρ̇+ ρ div v)v + ρv̇] dv

=

∫

P
ρa dv , (4.42)

hence, the principle of linear momentum balance in (4.41) can be also expressed as

∫

P
ρa dv =

∫

P
ρb dv +

∫

∂P
t(n) da . (4.43)

It is clear from (4.43) that this principle generalizes Newton’s second law where the left-hand

side is the mass-weighted acceleration and the right-hand side is the total force.

The principle of angular momentum balance states that the rate of change of angular

momentum for any part S of the body that occupies the region P at time t equals the
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moment of all external forces acting on this part. Again, this principle can be expressed

mathematically as

d

dt

∫

S

x× v dm =

∫

S

x× b dm+

∫

∂P
x× t(n) da (4.44)

or, again, by way of (4.21),

d

dt

∫

P
x× ρv dv =

∫

P
x× ρb dv +

∫

∂P
x× t(n) da . (4.45)

Invoking (4.10) and (4.33), one may easily rewrite the term on the left-hand side of (4.45)

as

d

dt

∫

P
x× ρv dv =

∫

P

{
d

dt
(x× ρv) + (x× ρv) divv

}

dv

=

∫

P
{[ẋ× ρv + x× ρ̇v + x× ρv̇] + (x× ρv div v)} dv

=

∫

P
{x× (ρ̇+ ρ divv)v + x× ρa} dv

=

∫

P
x× ρa dv . (4.46)

As a result, the principle of angular momentum balance may be also written as

∫

P
x× ρa dv =

∫

P
x× ρb dv +

∫

∂P
x× t(n) da . (4.47)

The preceding two balance laws are also referred to as Euler’s laws. They are termed

“balance” laws because they postulate that there exists a balance between external forces

(and their moments) and the rate of change of linear (and angular) momentum. Euler’s laws

are independent axioms in continuum mechanics.

In the special case where b = 0 in P and t(n) = 0 on ∂P , then equations (4.41) and (4.45)

readily imply that the linear and the angular momentum are conserved quantities in P.

Hence, these balance laws reduce to corresponding conservation laws. Another commonly

encountered special case is when the acceleration a vanishes identically or is negligible in

comparison to the external force and moment terms. In this case, equations (4.41) and (4.45)

imply that the sum of all external forces and the sum of all external moments vanish, which

gives rise to the classical equilibrium equations.
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4.7 Stress vector and stress tensor

As in the case of mass balance, it is desirable to obtain local forms of linear and angular

momentum balance. Recalling the corresponding integral statements (4.43) and (4.47), it

is clear that the acceleration and the body force terms are already in the form of volume

integrals. Therefore, in order to apply the localization theorem, it is essential that the

contact form terms (presently written as surface integrals) be transformed into equivalent

volume integral terms.

P1P1 P2P2

∂P ∂P ′ ∂P ′′
σ

σ
σ

n1 = n n2

Figure 4.6. Setting for the derivation of Cauchy’s lemma.

Preliminary to deriving the local forms of momentum balance, consider some properties

of the traction vector t(n). In particular, take an arbitrary region P ⊂ R and partition it

into two mutually disjoint subregions P1 and P2 separated by an arbitrarily chosen smooth

surface σ, namely P = P1 ∪ P2 and P1 ∩ P2 = ∅, see Figure 4.6. Also, note that the

boundaries ∂P1 and ∂P2 of P1 and P2, respectively, can be expressed as ∂P1 = ∂P ′ ∪ σ

and ∂P2 = ∂P ′′ ∪ σ, while also ∂P = ∂P ′ ∪ ∂P ′′. Now, enforce linear momentum balance

separately for P1 and P2 to find according to (4.43) that
∫

P1

ρa dv =

∫

P1

ρb dv +

∫

∂P1

t(n) da (4.48)

and ∫

P2

ρa dv =

∫

P2

ρb dv +

∫

∂P2

t(n) da (4.49)

Subsequently, add the two equations together to find that
∫

P1∪P2

ρa dv =

∫

P1∪P2

ρb dv +

∫

∂P1∪∂P2

t(n) da (4.50)

or ∫

P
ρa dv =

∫

P
ρb dv +

∫

∂P1∪∂P2

t(n) da . (4.51)
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Further, enforce linear momentum balance on P, the union of P1 and P2, to conclude that
∫

P
ρa dv =

∫

P
ρb dv +

∫

∂P
t(n) da . (4.52)

Subtracting (4.52) from (4.51) leads to
∫

∂P1∪∂P2

t(n) da =

∫

∂P
t(n) da . (4.53)

Recalling the decompositions of ∂P1, ∂P2, and ∂P, the preceding equation may be also

expressed as ∫

∂P ′∪σ
t(n) da+

∫

∂P ′′∪σ
t(n) da =

∫

∂P ′∪P ′′

t(n) da (4.54)

or ∫

∂P ′∪∂P ′′

t(n) da+

∫

σ

t(n1) da+

∫

σ

t(n2) da =

∫

∂P ′∪P ′′

t(n) da . (4.55)

It follows that ∫

σ

t(n1) da+

∫

σ

t(n2) da = 0 , (4.56)

which can be also written as
∫

σ

(t(n) + t(−n)) da = 0 . (4.57)

Since σ is an arbitrary surface, assuming that t depends continuously on n and x along σ,

the localization theorem yields the condition t(n) + t(−n) = 0 or, in expanded form,

t(x, t;n) = −t(x, t;−n) . (4.58)

This result is called Cauchy’s lemma on t(n). It states that the contact forces acting at x

on opposite sides of the same smooth surface are equal and opposite. It is important to

recognize here that in continuum mechanics Cauchy’s lemma is not an axiom. Rather, it

is derivable from the principle of linear momentum balance, as shown above. This is in

contrast to particle mechanics, where action-reaction is admitted axiomatically in the form

of Newton’s third law.

At this stage, consider the following problem, originally conceived by Cauchy: take a

tetrahedral region P ⊂ R (the Cauchy tetrahedron), such that, without any loss of generality,

three of its edges are parallel to the axes of {ei} and meet at a point x, as in Figure 4.7.

Let σi be the face with unit outward normal −ei, and σ0 the (inclined) face with outward

unit normal n. Denote A the area of σ0, so that the area vector ndA can be resolved as

nA = (niei)A = Aniei = Aiei , (4.59)
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where Ai = Ani is the area of the face σi (and also equal to the area of the projection of

the surface σ0 on the plane with normal ei). In addition, the volume of the tetrahedron is

V =
1

3
Ah, where h is the distance of x from face σ0.

3

2 1

R
e1

e2

e3

x

Figure 4.7. The Cauchy tetrahedron

Preliminary to applying balance of linear momentum to the tetrahedral region P in the

form of equation (4.43), concentrate on the surface integral term, which, in this case, becomes

∫

∂P
t(n) da =

∫

σ1

t(−e1) da+

∫

σ2

t(−e2) da+

∫

σ3

t(−e3) da+

∫

σ0

t(n) da . (4.60)

Upon invoking Cauchy’s lemma in the form of (4.58), the preceding integral becomes

∫

∂P
t(n) da = −

∫

σ1

t(e1) da−
∫

σ2

t(e2) da−
∫

σ3

t(e3) da+

∫

σ0

t(n) da . (4.61)

In view of (4.61), the balance of linear momentum (4.43) can be expressed as

∫

P
ρ(a− b) dv =

∫

σ0

t(n) da−
∫

σ1

t(e1) da−
∫

σ2

t(e2) da−
∫

σ3

t(e3) da . (4.62)

Assuming that ρ, a, and b are bounded, one can obtain an upper-bound estimate for the

magnitude of the domain integral on the left-hand side as6

∣
∣
∣
∣

∫

P
ρ(a− b) dv

∣
∣
∣
∣
≤
∫

P
|ρ(a− b)| dv =

∫

P
K(x, t) dv = K∗V = K∗1

3
Ah , (4.63)

where K(x, t) = |ρ(a− b)| and K∗ = K(x∗, t), with x∗ being some interior point of P. The

preceding derivation makes use of the mean-value theorem for integrals.7 Assuming that t(ei)

6The inequality in (4.62) is due to the property
∣
∣
∫

P
f dv

∣
∣ ≤

∫

P
|f | dv for any integrable function f in P .

7The mean-value theorem for integrals states that if P has positive volume (vol(P) > 0) and is closed,

bounded and connected, and if f is continuous in ε3, then there exists a point x∗ ∈ P for which

∫

P

f(x) dv =

f(x∗) vol(P).
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are continuous in x, apply the mean value theorem for integrals component-wise to get
∫

σi

t(ei) da = t∗iAi (no summation on i) , (4.64)

so that summing up all three like equations

3∑

i=1

∫

σi

t(ei) da = t∗iAi = t∗iAni . (4.65)

Also, for the inclined face ∫

σ0

t(n) da = t∗(n)A . (4.66)

Note that the traction vectors t∗i and t∗(n) are generally composed of coordinates chosen from

different interior points of σi and σ0. Recalling from (4.62) and (4.63) that

∣
∣
∣
∣
∣

∫

σ0

t(n) da−
3∑

i=1

∫

σi

t(ei) da

∣
∣
∣
∣
∣
≤ 1

3
K∗Ah , (4.67)

write, with the aid of (4.65) and (4.66),

∣
∣
∣
∣
∣

∫

σ0

t(n) da−
3∑

i=1

∫

σi

t(ei) da

∣
∣
∣
∣
∣
=
∣
∣t∗(n)A− t∗iAni

∣
∣ = A

∣
∣t∗(n) − t∗ini

∣
∣ ≤ 1

3
K∗Ah , (4.68)

which simplifies to

|t∗(n) − t∗ini| ≤ 1

3
K∗h . (4.69)

Now, upon applying the preceding analysis to a sequence of geometrically similar tetrahedra

with heights h1 > h2 > . . ., where limi→∞ hi = 0, one finds that

|t(n) − tini| ≤ 0 , (4.70)

where, obviously, all stress vectors are evaluated exactly at x, hence the superscript ∗ is

dropped. It follows from (4.70) that at point x

t(n) = tini . (4.71)

Equation (4.71) reveals that the traction t(n) is the surface area-weighted sum (rather than

the straight sum) of the tractions on the lateral surfaces of the infinitesimal tetrahedron.

The Cauchy tetrahedron argument is a brilliant example of asymptotic analysis, in which

it is essentially recognized that the two volume integrals in (4.43) scale with length-cubed,

ME185



116 Physical principles

while the area integrals scales with length-squared. Therefore, it is possible to neglect all vol-

umetric effects as the tetrahedron shrinks to a point, thereby deriving the local relation (4.70)

based only on the surface contributions.

With the preceding development in place, define the tensor T as

T = ti ⊗ ei , (4.72)

so that, when operating on the unit vector n,

Tn = (ti ⊗ ei)n = ti(ei · n) = tini = t(n) , (4.73)

as seen with the aid of (4.71). The tensor T is called the Cauchy stress tensor. The existence

of a unique stress tensor T at any point x that relates the stress vector t(n) at x to the unit

normal n of the plane on which it acts according to

t(n) = Tn (4.74)

is known as Cauchy’s stress theorem. From its definition in (4.72), it is clear that the Cauchy

stress tensor T, unlike the stress vector t(n), does not depend on the normal n.

It can be readily seen from (4.72) that

T = Tkiek ⊗ ei

= ti ⊗ ei , (4.75)

hence

ti = Tkiek . (4.76)

Conversely, since

ti · ej = Tkiek · ej = Tji , (4.77)

it is immediately seen that

Tij = ei · tj . (4.78)

Return now to the integral statement of linear momentum balance and, taking into

account (4.73), apply the divergence theorem to the boundary integral term. This leads to
∫

P
ρa dv =

∫

P
ρb dv +

∫

∂P
t(n) da

=

∫

P
ρb dv +

∫

∂P
Tn da

=

∫

P
ρb dv +

∫

P
divT dv . (4.79)
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It follows from the preceding equation that the condition

∫

P
(ρa− ρb− divT) dv = 0 , (4.80)

holds for an arbitrary area P, which, with the aid of the localization theorem leads to a local

form of linear momentum balance in the form8

divT+ ρb = ρa . (4.81)

An alternative statement of linear momentum balance can be obtained by noting from (4.72)

that
∫

P
ρa dv =

∫

P
ρb dv +

∫

∂P
t(n) da

=

∫

P
ρb dv +

∫

∂P
tini da

=

∫

P
ρb dv +

∫

P
ti,i dv . (4.82)

Again, appealing to the localization theorem, this leads to

ti,i + ρb = ρa . (4.83)

Turning attention next to the balance of angular momentum, start by examining the

boundary integral term in (4.47). Appealing to (4.71) and the divergence theorem, this

integral can be written as

∫

∂P
x× t(n) da =

∫

∂P
x× tini da =

∫

P
(x× ti),i dv =

∫

P
(x,i × ti + x× ti,i) dv . (4.84)

Substituting the preceding equation into (4.47) yields

∫

P
x× ρa dv =

∫

P
x× ρb dv +

∫

P
(x,i × ti + x× ti,i) dv (4.85)

or, upon rearranging the terms,

∫

P
[x× (ρa− ρb− ti,i) + x,i × ti] dv = 0 . (4.86)

8Some authors choose to define the Cauchy stress as T = ei⊗ti and the divergence operator according to

divT · c = div (Tc), for any constant vector c, instead of the corresponding definitions in (2.79) and (4.72).

These two alternative definitions lead again to the local form of linear momentum balance in (4.81).
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Recalling the local form of linear momentum balance in (4.83), the above equation reduces

to ∫

P
x,i × ti dv = 0 . (4.87)

The localization theorem can be invoked again to conclude that

x,i × ti = 0 (4.88)

or

ei × ti = 0 . (4.89)

In component form, this condition can be expressed with the aid of (4.76) as

ei × (Tjiej) = Tjiei × ej = Tjiǫijkek = 0 , (4.90)

which means that Tij = Tji or, in direct form,

T = TT . (4.91)

Hence, angular momentum balance requires that the Cauchy stress tensor be symmetric.

e1

e2
e3

T11

T21

T31

T12

T13

T22

T23

T32

T33

Figure 4.8. Interpretation of the Cauchy stress components on an orthogonal parallelepiped

aligned with the {ei}-axes.

An interpretation of the components of T on an orthogonal parallelepiped is shown in

Figure 4.8. Indeed, recalling (4.76), it follows that

t1 = T11e1 + T21e2 + T31e3 , (4.92)
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which means that Ti1 is the i-th component of the traction that acts on the plane with

outward unit normal e1. More generally, Tij is the i-th component of the traction that acts

on the plane with outward unit normal ej. The components Tij of the Cauchy stress tensor

can be put in matrix form as

[Tij ] =






T11 T12 T13

T21 T22 T23

T31 T32 T33




 , (4.93)

where [Tij ] is symmetric. The linear eigenvalue problem

(T− T i)n = 0 (4.94)

yields three real eigenvalues T1 ≥ T2 ≥ T3, which are solutions of the characteristic poly-

nomial equation (2.47) in terms of the principal invariants of T, as defined in (2.48). It is

well-known that the associated unit eigenvectors n(1),n(2) and n(3) of T are mutually orthog-

onal provided the eigenvalues are distinct. Also, whether the eigenvalues are distinct or not,

there exists a set of mutually orthogonal eigenvectors for T.

The traction vector t(n) can be generally decomposed into normal and shearing parts on

the plane of its action. Indeed, the normal traction (that is, the projection of t(n) along n)

is given by

(t(n) · n)n = (n⊗ n)t(n) , (4.95)

as in Figure 4.9. Then, the shearing traction is equal to

n

t(n)
(t(n) · n)n

Figure 4.9. Projection of the traction to its normal and shearing components.

t(n) − (t(n) · n)n = t(n) − (n⊗ n)t(n) = (i− n⊗ n)t(n) . (4.96)
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If n is a principal direction of T, equations (4.94), (4.74), and (4.96) imply that

(i− n⊗ n)t(n) = (i− n⊗ n)Tn = (i− n⊗ n)Tn = 0 , (4.97)

that is, the shearing traction vanishes on the plane with unit normal n.

Example 4.7.1: Homogeneous equilibrium stress states
Consider three special homogeneous states of the Cauchy stress tensor T that lead to equilib-
rium in the absence of body forces, that is, such that divT = 0.

(a) Hydrostatic pressure

In this state, the stress vector is always pointing in the direction normal to any plane
that it is acting on, that is,

t(n) = −pn ,

where p is called the pressure. It follows immediately from (4.74) that

T = −pi ,

as in Figure 4.10.

p
p

p

p

p

p

Figure 4.10. An infinitesimal volume element under hydrostatic pressure

(b) Pure tension along the e-axis

Without loss of generality, let e = e1. In this case, the traction vectors ti are of the
form

t1 = Te1 , t2 = t3 = 0 .

Then, it follows from (4.72) or (4.76) that

T = T (e1 ⊗ e1) = T (e⊗ e) ,

as shown in Figure 4.11.
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T

Te1

e2
e3

Figure 4.11. An infinitesimal volume element under uniaxial tension along the direction of
e = e1

(c) Pure shear on the (e,k)-plane

Here, let e and k be two orthogonal vectors of unit magnitude and, without loss of
generality, set e1 = e and e2 = k. The tractions ti are now given by

t1 = Se2 , t2 = Se1 , t3 = 0 .

Appealing, again, to (4.72) or (4.76), it is easily seen that

T = S(e1 ⊗ e2 + e2 ⊗ e1) = S(e⊗ k+ k⊗ e) ,

as also depicted in Figure 4.12.

S

S S
S

e1

e2
e3

Figure 4.12. An infinitesimal volume element under shear on the plane of (e,k) = (e1, e2)

It is possible to resolve the stress vector acting on a surface of the current configuration

using the geometry of the reference configuration. This is conceivable when, for example,

one wishes to measure the internal forces developed in the current configuration per unit

area of the reference configuration. To this end, start by letting df be the total force acting

on the differential area da with outward unit normal n on the surface ∂P in the current
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configuration, that is,

df = t(n)da . (4.98)

Also, let dA be the image of da in the reference configuration under χ
−1
t and assume that

its outward unit is N. Then, define p(N) to be the traction vector resulting from resolving

the force df , which acts on ∂P , on the surface ∂P0, namely,

df = p(N)dA . (4.99)

Clearly, t and p are parallel, since they are both parallel to df , as is evident from (4.98)

and (4.99), see also Figure 4.13.

P0
P

N
n

p(N)

t(n)
df

df
dA

da

Figure 4.13. A force df acting on a differential area on the boundary of a domain ∂P and

resolved over the geometry of the current and reference configuration

Returning to the integral statement of linear momentum balance in (4.43), note that this

can be now readily transformed to the reference configuration by virtue of (4.37), (4.98),

and (4.99), hence taking the form
∫

P0

ρ0a dV =

∫

P0

ρ0b dV +

∫

∂P0

p(N) dA . (4.100)

Upon applying the preceding Cauchy tetrahedron argument to P0, it is readily concluded,

in complete analogy to (4.71), that

p(N) = pANA , (4.101)

where pA are the tractions developed in the current configuration, but resolved on the

geometry of the reference configuration on surfaces with outward unit normals EA. Further,

let the tensor P be defined as

P = pA ⊗ EA . (4.102)
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It follows that, when P operates on N,

PN = (pA ⊗ EA)N = pANA , (4.103)

thus, with the aid of (4.101), it is concluded that

p(N) = PN , (4.104)

which is the referential counterpart of Cauchy’s stress theorem in (4.74). The tensor P is

called the first Piola9-Kirchhoff10 stress tensor and it is naturally unsymmetric, since it has

a mixed basis, that is,

P = PiAei ⊗ EA . (4.105)

It follows from (4.102) that

P = pA ⊗ EA = PiAei ⊗ EA , (4.106)

which implies that

pA = PiAei . (4.107)

Further, since

pA · ej = PiAei · ej = PjA , (4.108)

it is clear that

PiA = ei · pA . (4.109)

Turning attention to the integral statement (4.100), it is concluded with the aid of (4.104)

and the divergence theorem that

∫

P0

ρ0a dV =

∫

P0

ρ0b dV +

∫

∂P0

p(N) dA

=

∫

P0

ρ0b dV +

∫

∂P0

PN dA

=

∫

P0

ρ0b dV +

∫

P0

DivP dV (4.110)

which, upon using the localization theorem, results in

ρ0b+DivP = ρ0a . (4.111)

9Gabrio Piola (1794–1850) was an Italian mathematician and mechanician.
10Gustav Kirchhoff (1824-1887) was a German physicist.
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This is the local form of linear momentum balance in the referential description.11

Alternatively, equation (4.103) and the divergence theorem can be invoked to show that
∫

P0

ρ0a dV =

∫

P0

ρ0b dV +

∫

∂P0

p(N) dA

=

∫

P0

ρ0b dV +

∫

∂P0

pANA dA

=

∫

P0

ρ0b dV +

∫

P0

pA,A dV (4.112)

from which another version of the referential statement of linear momentum balance can be

derived in the form

ρ0b+ pA,A = ρ0a . (4.113)

Starting from the integral form of angular momentum balance in (4.47) and pulling it

back to the reference configuration, one finds that
∫

P0

x× ρ0a dV =

∫

P0

x× ρ0b dV +

∫

∂P0

x× p(N) dA . (4.114)

Using (4.103) and the divergence theorem on the boundary term gives rise to
∫

P0

x× ρ0a dV =

∫

P0

x× ρ0b dV +

∫

∂P0

x× pANA dA

=

∫

P0

x× ρ0b dV +

∫

P0

(x× pA),A dV . (4.115)

Expanding and appropriately rearranging the terms of the above equation leads to
∫

P0

[x× (ρ0a− ρ0b− pA,A) + x,A × pA] dV = 0 . (4.116)

Appealing to the local form of linear momentum balance in (4.113) and, subsequently, the

localization theorem, one concludes that

x,A × pA = 0 . (4.117)

With the aid of (3.37), (4.107) and the chain rule, the preceding equation can be rewritten

as

x,A × pA = FiAei × PjAej = FiAPjAǫijkek = 0 , (4.118)

11It is important to emphasize the difference between the differential operators “div” and “Div” with the

former (the spatial divergence operator) involving derivatives with respect to the spatial coordinates xi and

the latter (the referential divergence operator) derivatives with respect to the referential coordinates XA.
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which implies that FPT is symmetric, that is,

FPT = PFT . (4.119)

This is a local form of angular momentum balance in the referential description.

Recalling (4.98) and (4.99), one may conclude with the aid of (4.73), (4.104) and Nanson’s

formula (3.135) that

PNdA = Tnda (4.120)

= TJF−TNdA , (4.121)

so that

T =
1

J
PFT (4.122)

or, conversely,

P = JTF−T . (4.123)

Clearly, the above two relations are consistent with the referential and spatial statements

of angular momentum balance, namely (4.122) or (4.123) can be used to derive the local

form of angular momentum balance in spatial form from the referential statement and vice-

versa. Likewise, it is possible to derive the local linear momentum balance statement in the

referential (resp. spatial) form from its corresponding spatial (resp. referential) counterpart,

see Exercise 4.8.

Note that there is absolutely no approximation or any other source of error associated

with the use of the balance laws in the referential as opposed to the spatial description.

Indeed, the invertibility of the motion at any fixed time t implies that both descriptions of

the balance laws are completely equivalent. In this regard, the referential description should

not be confused with the statement of the balance laws at the reference time t0.

Other stress tensors beyond the Cauchy and first Piola-Kirchhoff tensors are frequently

used in materials modeling. Among them, is the Kirchhoff stress tensor τ , defined as

τ = JT = PFT , (4.124)

with components

τij = JTij . (4.125)

Clearly, the Kirchhoff stress has both legs in the current configuration and is also symmetric

due to the symmetry of T. Also, the nominal stress tensor Π is defined as the transpose of
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the first Piola-Kirchhoff stress, that is,

Π = PT = JF−1T , (4.126)

and has components

ΠAi = JF−1
Aj Tji . (4.127)

In addition, the second Piola-Kirchhoff stress tensor S is defined as

S = F−1P = JF−1TF−T , (4.128)

with its components given according to

SAB = F−1
Ai PiB = F−1

Ai TijF
−1
Bj . (4.129)

It is clear from (4.128) and (4.129) that S has both legs in the reference configuration and

is symmetric.

The definition of all stress tensors other than the Cauchy stress is dependent on the

existence and definition of a reference configuration.

4.8 The theorem of mechanical energy balance

Consider again the body B in the current configuration R and take an arbitrary material

region P with smooth boundary ∂P, as in Figure 4.2. With reference to the definition of

the external forces in Section 4.6, express the rate at which the body force b and surface

traction t(n) do work in P and on ∂P, respectively, as

Rb(P) =

∫

P
ρb · v dv (4.130)

and

Rc(P) =

∫

∂P
t(n) · v da . (4.131)

Also, define the rate of work done by all external forces as

R(P) = Rb(P) +Rc(P) . (4.132)

In addition, define the total kinetic energy of the material points contained in P as

K(P) =

∫

P

1

2
v · vρ dv . (4.133)
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Starting from the local statement of linear momentum balance (4.81), one may dot both

sides with the velocity v to find that

ρa · v = ρb · v + divT · v . (4.134)

Now, note that

divT · v = div(TTv)−T · gradv
= div(Tv)−T · (D+W)

= div(Tv)−T ·D , (4.135)

where use is made of (3.142) and (4.91), and also that

ρa · v =
1

2
ρ
d

dt
(v · v) . (4.136)

Equations (4.135) and (4.136) may be used to rewrite (4.134) as

1

2
ρ
d

dt
(v · v) +T ·D = ρb · v + div(Tv) . (4.137)

Next, integrating (4.137) over P leads to

∫

P

1

2
ρ
d

dt
(v · v) dv +

∫

P
T ·D dv =

∫

P
ρb · v dv +

∫

P
div(Tv) dv (4.138)

or, upon using conservation of mass and the divergence theorem,

d

dt

∫

P

1

2
ρv · v dv +

∫

P
T ·D dv =

∫

P
ρb · v dv +

∫

∂P
(Tv) · n da . (4.139)

Recalling (4.73) and (4.91), the preceding equation can be further rewritten as

d

dt

∫

P

1

2
ρv · v dv +

∫

P
T ·D dv =

∫

P
ρb · v dv +

∫

∂P
t(n) · v da . (4.140)

The second term on the left-hand side of (4.140),

S(P) =

∫

P
T ·D dv , (4.141)

is called the stress power and it represents the rate at which the stresses do work in P.

Taking into account (4.130), (4.131), (4.133), (4.141) and (4.140), it is seen that

d

dt
K(P) + S(P) = Rb(P) +Rc(P) = R(P) . (4.142)
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Equation (4.142) (or, equivalently, equation (4.140)) states that, for any region P, the rate

of change of the kinetic energy and the stress power of the particles in P are balanced

by the rate of work done by the external forces acting on the particles in P. This is a

statement of the balance of mechanical energy. It is important to emphasize here that

mechanical energy balance is derivable from the three basic principles of the mechanical

theory, namely conservation of mass and balance of linear and angular momentum, hence is

not an independent axiom.

Returning to the stress power term S(P), note that

∫

P
T ·D dv =

∫

P
T · L dv

=

∫

P

1

J
PFT · L dv

=

∫

P0

PFT · L dV

=

∫

P0

P · LF dV

=

∫

P0

P · Ḟ dV , (4.143)

where use is made of (4.122), (3.129) and (3.146). Further, by appealing to (4.128) and (3.60)

∫

P
T ·D dv =

∫

P0

P · Ḟ dV

=

∫

P0

FS · Ḟ dV

=

∫

P0

S · FT Ḟ dV

=

∫

P0

S · 1
2
(ḞTF+ FT Ḟ) dV

=

∫

P0

S · Ė dV . (4.144)

Equations (4.143) and (4.144) reveal that P is the work-conjugate kinetic measure to F

in P0 and, likewise, S is work-conjugate to E. These equations appear to leave open the

question of work-conjugacy for T, which, indeed, cannot be addressed by merely relying on

the notion of material time derivative.

A referential form of the mechanical energy balance theorem may be readily derived

from (4.140) by invoking balance of mass and using (4.98), (4.99) and (4.143). This is
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expressed as

d

dt

∫

P0

1

2
ρ0v · v dV +

∫

P0

P · Ḟ dV =

∫

P0

ρ0b · v dV +

∫

∂P0

p(N) · v dA . (4.145)

4.9 The principle of energy balance

The physical principles postulated up to this point are incapable of modeling the intercon-

vertibility of mechanical work and heat. In order to account for this class of (generally cou-

pled) thermomechanical phenomena, one needs to introduce an additional principle known

as balance of energy.

Preliminary to stating the balance of energy, define a scalar field r = r(x, t) called the

heat supply per unit mass (or specific12 heat supply), which quantifies the rate at which

heat is supplied (or absorbed) by the body through radiation. Also, define a scalar field

h = h(x, t;n) = h(n)(x, t) called the heat flux per unit area across a surface ∂P with outward

unit normal n. This regulates the heat supplied to P across its boundary through conduction

or convection. Now, given any region P ⊆ R, define the total rate of heating H(P) as

H(P) =

∫

P
ρr dv −

∫

∂P
h(n) da , (4.146)

where the negative sign in front of the boundary integral signifies the fact that the heat flux

is assumed positive when it exits the region P.

Next, assume the existence of a scalar function ε = ε(x, t) per unit mass, called the

(specific) internal energy. This function quantifies all forms of energy stored in the body

other than kinetic energy. Examples of stored energy include strain energy (that is, energy

due to deformation), chemical energy, and thermal energy. The internal energy U(P) stored

in P is then given by

U(P) =

∫

P
ρε dv . (4.147)

The principle of balance of energy is postulated in the form

d

dt

∫

P

[
1

2
ρv · v + ρε

]

dv =

∫

P
ρb · v dv +

∫

∂P
t(n) · v da+

∫

P
ρr dv −

∫

∂P
h(n) da . (4.148)

12The term “specific” is intended to signify that the quantity is measured per unit mass.
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This is also sometimes referred to as a statement of the First Law of Thermodynamics.

Equivalently, equation (4.148) can be written as

d

dt
[K(P) + U(P)] = R(P) +H(P) . (4.149)

Equation (4.148) (or, equivalently (4.149)) states that the rate of change of the total internal

energy (including kinetic energy) of the particles in a region P is balanced by the rate of

mechanical work done by the external forces on these particles and the total rate of heating

applied to these particles.

Subtracting (4.140) from (4.148) leads to a statement of balance of thermal energy in the

form
d

dt

∫

P
ρε dv =

∫

P
T ·D dv +

∫

P
ρr dv −

∫

∂P
h(n) da . (4.150)

According to this, the rate of change of the internal energy for the particles in P is balanced

by the stress power and the total rate of heating for the same particles.

Returning to the heat flux h = h(x, t;n), note that one may apply a standard argument to

formally deduce the dependence of h on n, as already done with the stress vector t = t(x, t;n)

in Section 4.6. Indeed, with reference to Figure 4.6, one may apply thermal energy balance

to a region P with boundary ∂P and to each of two regions P1 and P2 with boundaries

∂P1 and ∂P2, where P1 ∪ P2 = P and P1 ∪ P2 = ∅. Also, the boundaries ∂P1 = ∂P ′ ∪ σ,

∂P2 = ∂P ′′ ∪ σ have a common surface σ and ∂P ′ ∪ ∂P ′′ = ∂P. It follows that

d

dt

∫

P
ρε dv =

∫

P
T ·D dv +

∫

P
ρr dv −

∫

∂P
h(n) da . (4.151)

and, also,
d

dt

∫

P1

ρε dv =

∫

P1

T ·D dv +

∫

P1

ρr dv −
∫

∂P1

h(n) da (4.152)

and
d

dt

∫

P2

ρε dv =

∫

P2

T ·D dv +

∫

P2

ρr dv −
∫

∂P2

h(n) da (4.153)

Adding the last two equations leads to

d

dt

∫

P1∪P2

ρε dv =

∫

P1∪P2

T ·D dv +

∫

P1∪P2

ρr dv −
∫

∂P1∪∂P2

h(n) da (4.154)

or, equivalently,

d

dt

∫

P
ρε dv =

∫

P
T ·D dv +

∫

P
ρr dv −

∫

∂P1∪∂P2

h(n) da . (4.155)
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Subtracting (4.151) from (4.155) results in

∫

∂P1∪∂P2

h(n) da−
∫

∂P
h(n) da = 0 , (4.156)

or, equivalently, ∫

∂P ′∪σ
h(n) da+

∫

∂P ′′∪σ
h(n) da =

∫

∂P
h(n) da . (4.157)

As in the case of the stress vector, the preceding equation may be expanded to

∫

∂P ′∪∂P ′′

h(n) da+

∫

σ

h(n1) da+

∫

σ

h(n2) da =

∫

∂P
h(n) da (4.158)

or ∫

σ

(h(n) − h(−n))da = 0 , (4.159)

where n1 = n and n2 = −n. Since σ is an arbitrary surface and h is assumed to depend

continuously on n and x along σ, the localization theorem yields the condition

h(n) = −h(−n) . (4.160)

or, more explicitly,

h(x, t;n) = −h(x, t;−n) . (4.161)

This is Cauchy’s lemma for the heat flux, which states that the flux of heat exiting a body

across a surface with outward unit normal n at a point x is equal to the flux of heat entering

a neighboring body at the same point across the same surface.

Using the tetrahedron argument of Section 4.7, in connection with the thermal energy

balance equation (4.150) and the flux continuity equation (4.161), gives rise to

h(n) = hini , (4.162)

where hi are the fluxes across the faces of the tetrahedron with outward unit normals ei.

Thus, one may write

h(n) = q · n , (4.163)

where q is the heat flux vector with components qi = hi.

Now, returning to the integral statement of energy balance in (4.148), one may use mass

conservation to rewrite it as
∫

P
(ρv · v̇ + ρε̇) dv =

∫

P
ρb · v dv +

∫

∂P
t(n) · v da+

∫

P
ρr dv −

∫

∂P
h(n) da . (4.164)
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Using (4.73) and (4.163), the above equation may be put in the form

∫

P
(ρv · v̇ + ρε̇) dv =

∫

P
ρb · v dv +

∫

∂P
Tn · v da+

∫

P
ρr dv −

∫

∂P
q · n da . (4.165)

Upon recalling (4.135) and invoking the divergence theorem, it is easily seen that

∫

∂P
Tn · v da =

∫

P
(divT · v +T ·D) dv (4.166)

and ∫

∂P
q · n da =

∫

P
div q dv . (4.167)

When the last two equations are substituted in (4.165), one finds that

∫

P

[
(ρv̇ − ρb− divT) · v + ρε̇−T ·D− ρr + div q

]
dv = 0 . (4.168)

Upon observing linear momentum balance in the form of equation (4.41) and invoking the

localization theorem, the preceding equation gives rise to the local form of energy balance

as

ρε̇ = T ·D+ ρr − divq . (4.169)

This equation could be also derived along the same lines from the integral statement of

thermal energy balance (4.150).13

Referential counterparts of (4.148), (4.150) and (4.169) may be derived in complete anal-

ogy to the derivation of the referential traction vector and stress tensor in Section 4.6. In

particular, the referential form of the local statement of energy balance is

ρ0ǫ̇ = P · Ḟ+ ρ0r − Divq0 , (4.170)

where q0 = JF−1q, see Exercise 4-26.

Example 4.9.1: Rigid heat conductor
Consider a rigid heat conductor, where rigidity implies that F = R (or, equivalently, U = I).
This means that

Ḟ = Ṙ = ΩR (Ω = ṘRT )

= LF = LR ,

13The energy equation is frequently quoted in elementary thermodynamics textbooks as “dU = δQ+δW”,

where dU corresponds to ρε̇, δQ to ρr − div q, and δW to T ·D.
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which implies that L = Ω, so that D = 0. Further, assume that Fourier’s law holds, that is,

q = −k gradT , (4.171)

where T is the empirical temperature and k > 0 is the (isotropic) heat conductivity. These
conditions imply that the balance of energy (4.169) reduces to

ρε̇ = div(k gradT ) + ρr . (4.172)

Further, assume that the internal energy depends exclusively on T and that this dependence

is linear, hence
dε

dT
= c, where c is termed the heat capacity. It follows from (4.172) that

ρcṪ = div(k gradT ) + ρr , (4.173)

which is the classical equation of transient heat conduction.

4.10 The second law of thermodynamics

Preliminary to discussing a continuum-mechanical form of the second law of thermodynam-

ics, admit the existence of the absolute temperature θ > 0 and the entropy η ≥ 0 per unit

mass. Neither quantity can be fully prescribed in continuum mechanical terms without

resorting to references to discrete systems (e.g., particles), hence both are admitted here ax-

iomatically. Loosely speaking, absolute temperature quantifies the energy of the vibrational

motion of elementary particles comprising a body, while entropy (whose units are energy

over temperature) is related to the amount of stored energy in the system that cannot be

used to do work. Entropy is considered an extensive quantity, while absolute temperature

an intensive one.

There is no consensus in continuum mechanics on a definitive version of the second law

of thermodynamics. This reflects the fact that as a theory, thermodynamics was not been

developed for continuous media. Therefore, adapting it to continuum mechanics entails

assumptions and ambiguity. The most frequently cited expression of the second law of

thermodynamics in continuum mechanics is in the form of the Clausius14-Duhem15 inequality,

according to which
d

dt

∫

P
ρη dv =

∫

P

ρr

θ
dv −

∫

∂P

h

θ
da , (4.174)

14Rudolf Clausius (1822–1888) was a German physicist and mathematician.
15Pierre Maurice Marie Duhem (1861–1916) was a French physicist and mathematician.
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for any region P with boundary ∂P occupied by a part of the body. One may think of the

two terms on the right-hand side of (4.174) as quantifying the entropy supply through the

volume and entropy flux through the boundary, respectively. Hence, the Clausius-Duhem

inequality could be interpreted as stating that the rate of change of entropy in any part of

a body equals or exceeds the total supply of entropy to the same part of the body from

external sources.16

A local counterpart of (4.174) may be readily derived by first recalling (4.163) and ap-

plying the divergence theorem for the only boundary term. This leads to
∫

∂P

h

θ
da =

∫

∂P

q · n
θ

da =

∫

P
div
(q

θ

)

dv . (4.175)

Invoking the Reynolds’ transport theorem (4.10) and the balance of mass in the form (4.33),

in conjunction with (4.175) and the localization theorem, leads to the local form of the

Clausius-Duhem inequality

ρη̇ ≥ ρr

θ
− div

(q

θ

)

(4.176)

or, upon expanding the divergence term and multiplying through with temperature,

ρθη̇ ≥ ρr − div q+ q · g
θ
, (4.177)

where g is the spatial temperature gradient, that is,

g = grad θ . (4.178)

Recalling the local form (4.169) of the energy balance, one may rewrite the Clausius-

Duhem inequality as

ρǫ̇− ρθη̇ −T ·D+ q · g
θ

≤ 0 . (4.179)

Now, define the Helmholtz free energy Ψ per unit mass as

Ψ = ǫ− ηθ . (4.180)

This can be heuristically thought of as the part of the stored energy which is capable of

producing work. Expressing the rate of the internal energy in (4.179) in terms of its equal

from (4.180), one reaches the equivalent local statement of Clausius-Duhem inequality

ρΨ̇ + ρηθ̇ −T ·D+ q · g
θ

≤ 0 . (4.181)

16This statement corresponds to the version of the second law of thermodynamics is frequently quoted in

elementary textbooks as “dS ≥ δQ

T
”, where dS is the change of entropy, δQ the infinitesimal transfer of

heat, and T the temperature.
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Corresponding referential statements to (4.179) and (4.181) can be easily derived as

ρ0ǫ̇− ρ0θη̇ −P · Ḟ+ q0 ·
G

θ
≤ 0 (4.182)

and

ρ0Ψ̇ + ρ0ηθ̇ −P · Ḟ+ q0 ·
G

θ
≤ 0 , (4.183)

respectively, where G is the referential temperature gradient,

G = Grad θ , (4.184)

see Exercise 4-31.

The fundamental challenge with the preceding formulation of the second law of thermo-

dynamics is that entropy is not a defined quantity (either directly or by prescription). There-

fore, stipulating axiomatically any inequality involving a primitive quantity is not guaranteed

to yield meaningful results. To address this concern, one may apply the Clausius-Duhem

inequality to simple continuum systems and assess the plausibility of its implications. In ad-

dition, one may seek to find prescriptions for the identification of entropy for such systems.

If both endeavors succeed, then one merely gains confidence in the use of the inequality.

The rigid heat conductor is a simple system in which one may test the use of the Clausius-

Duhem inequality. Here, assume that the Helmholtz free energy and the heat flux depend

on the temperature and the temperature gradient, that is,

Ψ = Ψ̂(θ, g) , q = q̂(θ, g) . (4.185)

In the absence of deformation, the Clausius-Duhem inequality in the form (4.181) reduces

to

ρΨ̇ + ρηθ̇ + q · g
θ

≤ 0 . (4.186)

Upon expressing the rate of Ψ in terms of its constituent parts in view of (4.185)1, it follows

that

ρ

(

∂Ψ̂

∂θ
θ̇ +

∂Ψ̂

∂g
· ġ
)

+ ρηθ̇ + q · g
θ

≤ 0 , (4.187)

hence,

ρ

(

∂Ψ̂

∂θ
+ η

)

θ̇ + ρ
∂Ψ̂

∂g
· ġ + q · g

θ
≤ 0 . (4.188)
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Now, consider a homothermal process, that is take θ to be spatially homogeneous, therefore

g = 0, and also assume ġ = 0. Since θ̇ can be positive, zero, or negative, the only way for

the preceding inequality to hold is if

η = −∂Ψ̂

∂θ
. (4.189)

Next, take a process in which the temperature θ is again spatially homogeneous, hence g = 0,

but where ġ 6= 0. In light of (4.189), the inequality (4.188) is satisfied only if

∂Ψ̂

∂g
= 0 , (4.190)

which means that Ψ may depend only on the temperature, that is, Ψ = Ψ̂(θ). This reduces

the inequality (4.188) to

q · g ≤ 0 , (4.191)

which states that the flux of heat opposes the gradient of the temperature, a result that

makes good physical sense.

Recall next the constitutive assumption for the heat flux in (4.185)2, and note that, upon

fixing θ, (4.191) implies that the real-valued function

f(g) = q̂(θ, g) · g (4.192)

attains a maximum value of zero at g = 0. This means that

∂f

∂g
(0) =

q̂(θ, 0)

∂g
0+ q̂(θ, 0) = 0 , (4.193)

which immediately implies that

q̂(θ, 0) = 0 . (4.194)

The last condition states that the heat flux vanishes when the temperature gradient is zero,

which is, again, entirely plausible. If the heat flux obeys Fourier’s law (4.171) in terms of

the absolute temperature, then (4.191) implies that the constant k = k(θ) is necessarily

non-negative.

Next, return to the energy equation (4.169) (with a vanishing stress power term) and

observe that (4.180) implies

ǫ̇ = Ψ̇ + η̇θ + ηθ̇ =
∂Ψ̂

∂θ
θ̇ + η̇θ + ηθ̇ =

(

∂Ψ̂

∂θ
+ η

)

θ̇ + η̇θ = η̇θ , (4.195)
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where use is made of (4.189). The preceding equation transforms the energy equation to

ρθη̇ = ρr − divq (4.196)

or

ρη̇ = ρ
r

θ
− div q

θ
. (4.197)

One may think of the above equation as a balance of entropy in which the rate of change

of entropy is balanced by the supply and flux terms.17 It is easy to conclude from (4.196)

that isentropic processes (where η̇ = 0) are adiabatic processes (where ρr − divq = 0) and

vice-versa.

For the rigid heat conductor, it is possible to formulate a prescription for the identification

of the entropy η. To this end, consider a homothermal process, where, by definition, g = 0,

hence, by virtue of (4.194), also q = 0. Therefore, equation (4.196) reduces to

η̇θ = r . (4.198)

Starting from some baseline temperature θ0 at time t0 where the entropy is assumed to

vanish, one may write, with the aid of (4.198),

η(θ) =

∫ t

t0

r

θ
dt , (4.199)

where θ remains spatially homogeneous but varies with time and r is chosen to impose this

state.

4.11 The transformation of mechanical and thermal

fields under superposed rigid-body motions

In this section, the transformation under superposed rigid-body motions is considered for

mechanical fields, such as density and stress, as well as for the balance laws themselves.

Starting with the stress vector t = t(x, t;n), and recalling the general form of the su-

perposed rigid-body motion in (3.176), write the same function in the configuration R+ as

t+ = t+(x+, t;n+). To argue how t and t+ may be related, first recall the transforma-

tion (3.199) of the unit normal n and also that t is linear in n, as established in (4.73). Since

17This equation may be directly compared to the elementary relation dS =
δQ

T
for so-called reversible

processes in classical thermodynamics.
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the two motions give rise to the same deformation, it is then reasonable to assume18 that,

under a superposed rigid-body motion, t+ will not change in magnitude relative to t and will

have the same orientation relative to n+ as t has relative to n. Therefore, it is postulated

that

t+ = Qt , (4.200)

that is, the stress vector is objective. The above transformation indeed implies that |t+| = |t|
and t+ · n+ = t · n.

Consider next the transformation of the Cauchy stress tensor under superposed rigid-

body motions. By way of background, it is important to emphasize here that, unlike the

transformation of kinematic terms, which is governed purely by geometry, the transformation

of balance laws (and any relations that emanate from them) in continuum mechanics is

governed by the principle of form-invariance under superposed rigid-body motion. This,

effectively, states that the balance laws are invariant under superposed rigid-body motions

in the sense that their mathematical representation remains unchanged under such motions.

Appealing to this principle, and taking into account (4.73), the relation between the stress

vector and the Cauchy stress tensor (itself an implication of linear momentum balance) in

the superposed configuration takes the form

t+ = T+n+ . (4.201)

Admitting (4.200), and using (4.73), (3.199) and (4.201), it follows that

t+ = Qt = QTn

= T+n+ = T+Qn ,
(4.202)

from where it is concluded that

(QT−T+Q)n = 0 . (4.203)

Owing to the arbitrariness of n, this leads to

T+ = QTQT . (4.204)

Equation (4.204) implies that once the stress vector is assumed to be objective, then the

Cauchy stress tensor T is likewise an objective spatial tensor.

18This is, indeed, only an assumption. Despite its plausibility, there are special cases in which this

assumption may not be physically reasonable.
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Recall next the relation between the Cauchy and the first Piola-Kirchhoff stress tensor

in (4.122). Given that this relation also holds in the superposed rigid-body configuration, it

follows that

P+ = J+T+(F−T )+ = J(QTQT )(QF−T ) = Q(JTF−T ) = QP , (4.205)

where the kinematic transformations (3.175) and (3.195) are employed in addition to (4.204).

Equation (4.205) implies that the first Piola-Kirchhoff stress P is an objective two-point

tensor. Proceeding in an analogous manner for the second Piola-Kirchhoff stress tensor S,

it follows from (4.128) that

S+ = J+(F−1)+T+(F−T )+ = J(F−1QT )(QTQT )(QF−T ) = JF−1TF−T = S ,

(4.206)

which implies that S is an objective referential tensor.

Since (4.206) holds true, it follows immediately that the material time derivative Ṡ sat-

isfies

Ṡ+ = Ṡ , (4.207)

that is, Ṡ is also objective. However, starting from the relation (4.204) and using (3.179) it

can be seen that

Ṫ+ = Q̇TQT +QṪQT +QTQ̇T

= (ΩQ)TQT +QṪQT +QT(ΩQ)T

= Ω(QTQT ) +QṪQT + (QTQT )ΩT

= ΩT+ +QṪQT −T+Ω , (4.208)

which shows that, unlike T, the material time derivative Ṫ of the Cauchy stress is not

objective. A similar conclusion may be drawn for the rate Ṗ of the first Piola-Kirchhoff

stress tensor, where now (4.205), in conjunction with (3.179), implies that

Ṗ+ = Q̇P+QṖ = (ΩQ)P+QṖ = ΩP+ +QṖ . (4.209)

Regarding the transformation under superposed rigid-body motions of the internal en-

ergy, as well as the heat supply and flux, it is typically assumed that

ε+ = ε , r+ = r , h+ = h . (4.210)
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Equations (3.199) and (4.210)3, in conjunction with the form-invariance of the thermal energy

balance under superposed rigid-body motions, imply that

h+ = q+ · n+ = q+ ·Qn

= h = q · n , (4.211)

therefore

(q+ −Qq) ·Qn = 0 . (4.212)

Once more, the arbitrariness of n leads to

q+ = Qq . (4.213)

Next, invoke form-invariance under superposed rigid-body motions to the principle of

mass balance. Indeed, using the local referential form (4.39) of this principle and taking into

account (3.195) gives rise to

ρ0 = ρ+J+ = ρ+J

= ρJ ,
(4.214)

which results in

ρ+ = ρ . (4.215)

Hence, the mass density is unaffected by superposed rigid-body motion, which is an intu-

itively plausible condition. The same conclusion may be reached when starting from the

spatial form of mass balance, see Exercise 4-21.

Invoking form-invariance under superposed rigid-body motions for the local form of linear

momentum balance in (4.81) implies that

div+ T+ + ρ+b+ = ρ+a+ . (4.216)

Appealing to (4.204) and resorting to components, note that

∂T+
ij

∂x+
j

=
∂(QikTklQjl)

∂xm

∂χm

∂x+
j

= Qik
∂Tkl

∂xm
QjlQjm

= Qik
∂Tkl

∂xm

δlm

= Qik
∂Tkl

∂xl

, (4.217)
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where it is recognized from (3.176) that
∂χ

∂x+
= QT , therefore, in components,

∂xm

∂x+
j

= Qjm.

The outcome of equation (4.217) may be written using direct notation as

div+ T+ = Q divT , (4.218)

which shows that the divergence of the Cauchy stress transforms as an objective vector.

Using (4.81), (4.216) and (4.218), one concludes that

div+ T+ = ρ+(a+ − b+) = ρ(a+ − b+)

= Q divT = Qρ(a− b) ,

from where it follows that

a+ − b+ = Q(a− b) . (4.219)

This means that, under superposed rigid-body motions, the body forces transform as

b+ = Qb+ a+ −Qa , (4.220)

where an explicit expression for a+ in terms of the superposed motion is given in (3.182).

It is reasonable to think of b+ as an apparent body force which artificially encompasses the

part a+ −Qa of the acceleration induced by the superposed rigid-body motion.

Generally, a superposed rigid-body motion is termed inertial if the body force in the state-

ment of linear momentum balance transforms objectively.19 Physically, an inertial super-

posed rigid-body motion does not introduce artificial body forces. Given (3.182) and (4.220),

it is clear that a superposed rigid-body motion is inertial if, and only if, a+ = Qa. In this

case, equations (4.218) and (4.220) imply that each of the three vector terms in the lo-

cal statement of linear momentum balance is subjected to an orthogonal transformation

by Q.

Example 4.11.1: Superposed rigid-body translations
It is easy to show that any constant-velocity rigid-body translation superposed on a given
motion is inertial. Indeed, in this case,

Q = I , Q̇ = Q̈ = 0 , c = c0t ,

19Some authors prefer to write the balance laws only for inertial superposed rigid-body motions rather than

for arbitrary superposed rigid-body motions so as to avoid introducing the apparent body forces in (4.220).
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where c0 is a constant vector. Recalling (3.182), this readily implies that a+ = a and also
b+ = b.

Equations (4.210)1,2 and (4.215), together with (4.204) and (3.201), imply that balance of

energy is form-invariant under superposed rigid-body motions, in the sense that the equation

ρ+ε̇+ = T+ ·D+ + ρ+r+ − div+ q+ (4.221)

reduces to the original energy balance equation (4.169), since, by analogy to the derivation

of (4.218), it is easy to show using (4.213) that

div+ q+ = divq , (4.222)

4.12 The Green-Naghdi-Rivlin theorem

This important theorem highlights the unique role of the energy equation among the funda-

mental principles of continuum mechanics.

Assume that the principle of energy balance, taken here in its integral form, remains

form-invariant under superposed rigid-body motions. With reference to (4.148), this means

that

d

dt

∫

P+

[
ρ+ε+ +

1

2
ρ+v+ · v+

]
dv+

=

∫

P+

ρ+b+ · v+ dv+ +

∫

∂P+

t+ · v+ da+ +

∫

P+

ρ+r+ dv+ −
∫

∂P+

h+ da+ . (4.223)

Now, choose a special superposed rigid-body motion, which is a pure rigid translation at

constant velocity, such that at a given time t,

Q = i , c(t) = c0t , (4.224)

where c0 is a constant non-zero vector in E3. It follows immediately from (3.180), (3.182)

and (4.224) that

v+ = v + c0 , a+ = a . (4.225)

Moreover, it is readily concluded from (4.220), (4.200), (4.224) and (4.225) that under this

superposed rigid translation

b+ = b , t+ = t . (4.226)
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It follows from (4.210), (4.215), (4.225), and (4.226) that (4.223) takes the form

d

dt

∫

P

[
ρε+

1

2
ρ(v + c0) · (v + c0)

]
dv

=

∫

P
ρb · (v + c0) dv +

∫

∂P
t · (v + c0) da+

∫

P
ρr dv −

∫

∂P
h da . (4.227)

Upon subtracting (4.148) from (4.227), it is concluded that

c0 ·
[ d

dt

∫

P
ρv dv −

∫

P
ρb dv −

∫

∂P
t da

]

+
1

2
(c0 · c0)

[ d

dt

∫

P
ρ dv

]

= 0 . (4.228)

Since c0 is an arbitrary constant vector, one may rewrite (4.228) by replacing c0 with −c0

and then add the two equations. Owing to the arbitrariness of c0 it now follows that

d

dt

∫

P
ρ dv = 0 , (4.229)

hence, also,
d

dt

∫

P
ρv dv =

∫

P
ρb dv +

∫

∂P
t da . (4.230)

This, in turn, means that translational form-invariance of the energy equation (at constant

velocity) and the conditions (4.226) jointly imply the integral forms of mass conservation

and linear momentum balance.20

Next, a second special superposed rigid-body motion is chosen, such that, for a given

time t,

Q = i , Q̇ = Ω0 , c = 0 , (4.231)

whereΩ0 is a constant skew-symmetric tensor. Given (4.231), it can be easily seen from (3.176),

(3.180) and (3.182) that

v+ = v +Ω0x , a+ = a+ 2Ω0v +Ω2
0x . (4.232)

Equations (4.232) imply that the superposed motion is a rigid rotation with constant an-

gular velocity ω0 on the original current configuration of the continuum. Taking into ac-

count (4.200), (4.220), (4.231) and (4.232)2, it is established that in this case

b+ = b+ 2Ω0v +Ω2
0x , t+ = t . (4.233)

20If condition (4.226)1 is derived from (4.220), then the argument leading to the proof of the first part

of the Green-Naghdi-Rivlin theorem becomes circular. Alternatively, one could treat this condition as an

implication of the inertial nature of translations under constant velocity.
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In addition, equations (4.232)1 and (4.233)1 lead to

v+ · v+ = v · v + 2Ω0x · v +Ω0x ·Ω0x (4.234)

and

b+ · v+ = b · v + b ·Ω0x+ 2Ω0v · v + 2Ω0v ·Ω0x +Ω2
0x · v +Ω2

0x ·Ω0x

= b · v + b ·Ω0x+Ω0v ·Ω0x , (4.235)

where the readily verifiable identities

Ω0v · v = 0 , Ω2
0x ·Ω0x = 0 , Ω0v ·Ω0x+Ω2

0x · v = 0 (4.236)

are employed. Similarly, using (4.232)1, (4.233)1, and (4.236), it is seen that

1

2

d

dt
(v+ · v+) = a · v + a ·Ω0x+Ω0v ·Ω0x +Ω0v · v

= a · v + a ·Ω0x+Ω0v ·Ω0x . (4.237)

Invoking now form-invariance of the energy equation under the superposed rigid rotation, it

can be concluded from (4.223), as well as from (4.234), (4.235) and (4.237), that

d

dt

∫

P
ρε dv +

∫

P
ρ(a · v + a ·Ω0x+Ω0v ·Ω0x) dv

=

∫

P
ρ(b · v + b ·Ω0x +Ω0v ·Ω0x) dv

+

∫

∂P
t · (v +Ω0x) da+

∫

P
ρr dv −

∫

∂P
h da . (4.238)

After subtracting (4.148) from (4.238) and simplifying the resulting equation, it follows that

∫

P
ρa ·Ω0x dv =

∫

P
ρb ·Ω0x dv +

∫

∂P
t ·Ω0x da . (4.239)

Recalling that, for any given vector z in E3,

z · (Ω0x) = z · (ω0 × x) = ω0 · (x× z) , (4.240)

where ω0 is a (constant) axial vector of Ω0, equation (4.239) takes the equivalent form

ω0 ·
[∫

P
x× ρa dv −

∫

P
x× ρb dv −

∫

∂P
x× t da

]

= 0 . (4.241)
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Since ω0 is arbitrary, this and mass balance imply that

d

dt

∫

P
x× ρv dv =

∫

P
x× ρb dv +

∫

∂P
x× t da , (4.242)

where use is also made of mass balance. This derivation confirms that the integral form of

angular momentum balance may be deduced by assuming rotational invariance of the energy

equation (under constant angular velocity), exploiting the mass balance law derived from

translational invariance, and appealing to the condition (4.233)1 for the body force.21

The preceding analysis shows that the integral forms of conservation of mass, and balance

of linear and angular momentum are directly deduced from the integral form of energy bal-

ance and the postulate of invariance under superposed rigid-body motions. This remarkable

result is referred to as the Green22-Naghdi23-Rivlin24 theorem.

The Green-Naghdi-Rivlin theorem can be viewed as an implication of the general covari-

ance principle proposed by Einstein. According to this principle, all physical laws should

be invariant under any smooth time-dependent coordinate transformation (including, as a

special case, rigid time-dependent transformations). This far-reaching principle stems from

Einstein’s conviction that physical laws are oblivious to specific coordinate systems, hence

should be expressed in a covariant manner, that is, without being restricted by specific

choices of coordinate systems. In covariant theories, the energy equation plays a central

role, as demonstrated by the Green-Naghdi-Rivlin theorem.

4.13 Exercises

4-1. (a) Let ∂P be any smooth closed surface with outer unit normal n. Use the divergence
theorem to show that ∫

∂P
n da = 0 .

(b) Use the result of part (a) to deduce the Piola identity :

Div (JF−T ) = 0 ; (JF−1
Ai ),A = 0 .

21At this stage, condition (4.233)1 may be thought of as an implication of invariance of the linear mo-

mentum balance (already derived from translational invariance of the energy balance) under superposed

rigid-body motions.
22Albert E. Green (1912–1999) was a British mechanician.
23Paul M. Naghdi (1924–1994) was an Iranian-born American mechanician.
24Ronald S. Rivlin (1915–2005) was a British-born American mechanician.
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(c) Show also that

div (J−1FT ) = 0 ; (J−1FAi),i = 0 .

4-2. Let A be a smooth surface with outward unit normal n at time t.

(a) Show that for any continuously differentiable vector function w = w(x, t),

d

dt

∫

A
w · n da =

∫

A

[

ẇ + (trL)w − Lw
]

· n da ,

where L is the spatial velocity gradient tensor on A.

(b) Starting from the result of part (a), deduce the alternative identity

d

dt

∫

A
w · n da =

∫

A

[∂w

∂t
+ (divw)v − curl (v ×w)

]

· n da .

(c) Show that for any continuously differentiable scalar function ψ = ψ(x, t),

d

dt

∫

A
ψn da =

∫

A

[

ψ̇n + ψ
{
(trL)n − LTn

}]

da ,

where, again, L is the spatial velocity gradient tensor on A.

4-3. Let φ and ψ be twice continuously differentiable scalar functions defined on a region P ∪ ∂P
of E3, and assume that ∂P is a smooth surface with outward unit normal n.

(a) Prove Green’s First Identity, according to which

∫

∂P
φ
∂ψ

∂n
da =

∫

P

(
gradφ · gradψ + φdiv (gradψ)

)
dv ,

where
∂(·)
∂n

denotes the partial derivative of (·) in the direction of n.

(b) Use the above result to obtain Green’s Second Identity, according to which

∫

∂P

(
φ
∂ψ

∂n
− ψ

∂φ

∂n

)
da =

∫

P

(
φdiv (gradψ) − ψ div (grad φ)

)
dv .

(c) Recall that a twice continuously differentiable scalar function f is termed harmonic if
and only if it satisfies Laplace’s equation, namely if

div(grad f) = ∇2f = 0 .

Show that if f is harmonic in P, then

∫

∂P

∂f

∂n
da = 0 .
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(d) Show that if f is harmonic in P and vanishes identically on ∂P, then f vanishes every-
where in P.

(e) Consider the following boundary-value problem:

∇2f = 0 in P ,

f = f̄ on ∂P ,

where f̄ is a function that represents the prescribed values of f on ∂P. The above
problem is known as the Dirichlet Problem for Laplace’s equation. Show that if a
solution to the above boundary-value problem exists, then it is unique.

4-4. Consider a spatially fixed spherical region P̄ of E3 with radius R and smooth boundary ∂P̄ ,
and let a body B go through P̄ during its motion.

(a) Let the velocity of the body is of the special form

v =
1

ρ
c ,

where ρ is the mass density in the current configuration and c is a constant vector.
Show that the total mass m of the material particles contained in P̄ does not change
with time.

(b) Let the velocity of the body be given on ∂P̄ by

v =
c

ρ
n ,

where ρ is the mass density of the material, n is the outward unit normal to ∂P̄ , and c
is a positive constant. Show that the rate of change of the total mass m contained in P̄
is given by

∂m

∂t
= −4πR2c .

4-5. Consider the motion of a body in which the spatial velocity vector is written with reference
to a fixed orthonormal basis ei as

v = (ax1 − bx2) e1 + (bx1 − ax2) e2 + cx3 e3 ,

where a, b, and c are constants.

(a) Assuming that the mass density ρ0 of the body in the reference configuration at time
t0 = 0 is uniform (that is, ρ0 is independent of position X), determine the mass density
ρ = ρ(x, t) in the current configuration.

(b) Using the expression for the mass density ρ obtained in part (a), find the material time

derivative ρ̇ and compare it with the spatial time derivative
∂ρ

∂t
. Are they equal? If

yes, provide a physical justification of why this is the case.
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4-6. Consider a material for which the Cauchy stress is always of the form

T = −p(ρ)i ,

where the pressure p is a given function of the density ρ. Let a body made of this material
undergo a homogeneous motion such that

x = etX ,

and assume that the mass density at time t = 0 is uniform and equal to ρ0.

(a) Determine the velocity and acceleration of the body.

(b) Deduce the density of the material in the current configuration. Is the density uniform?

(c) Consider a part of the body which in the reference configuration occupies the region P0

defined as

P0 =
{
(X1,X2,X3) ∈ E3 | | X1 |≤ 1 , | X2 |≤ 1 , | X3 |≤ 1

}
.

Compute the kinetic energy for this part of the body at time t.

(d) For the same part of the body as in (d), compute the stress power at time t.

4-7. Recall that the center of mass for a body that occupies a region R at time t is the point
whose position vector x̄ is given by

x̄ =
1

m

∫

R
ρx dv ,

where m is the total mass of the body.

(a) Show that
∫

R
ρ(x − x̄) dv = 0

and ∫

R
ρ(ẋ − ˙̄x) dv = 0 .

(b) Show that Euler’s Laws imply that

F = m¨̄x

and

MG = ḢG ,

where F is the total external force acting on the body at time t, HG is the angular
momentum of the body with respect to its mass center, and MG is the total moment
with respect to the mass center due to the external forces acting on the body.
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(c) In the special case of a body that is undergoing a rigid rotation about the origin of
the fixed Cartesian coordinate system, namely when there exists a proper orthogonal
tensor Q(t) such that

x = QX ,

show that there exists a vector ω(t) such that

v = ω × x .

In addition, show that the angular momentum of the body at time t with respect to
the fixed origin of the coordinate system can be expressed as

H = Jω ,

where J(t) is the inertia tensor defined as

J =

∫

R
ρ(x · x I − x⊗ x) dv .

In the above definition, I stands for the identity tensor.

4-8. Show that the rate of change of the angular momentum in a region P satisfies

d

dt

∫

P
x× ρv dv =

d

dt

∫

P
(x− x̄)× ρv dv + x̄×

∫

P
ρa dv ,

where x̄ is the center of mass in the region P. Provide a physical interpretation of this result.

4-9. Consider two surfaces σ and σ′ passing through a point x in the current configuration of a
body. Also, denote by n and n′ the outward unit normals to σ and σ′, respectively, and let
T be the Cauchy stress tensor at x. Show that

t(n′) · n = t(n) · n′ ,

where t(n) and t(n′) are the stress vectors at x acting on σ and σ′, respectively.

4-10. Let T be the Cauchy stress tensor for a body at a given point x and time t. Suppose that
the stress vector t(n) at x on a surface σ lies in the direction of the normal n to σ, while
the stress vector t(m) at x on any surface τ with outward unit normal m vanishes, provided
n ·m = 0. Show that T corresponds to a state of pure tension.

4-11. Starting from the local statement of linear momentum balance in referential form,

DivP + ρ0b = ρ0a ,

obtain the associated local statement in spatial form,

divT + ρb = ρa ,

without directly resorting to the respective integral statements.
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4-12. Starting from the local form of linear momentum balance in (4.83), deduce directly (i.e.,
without use of integral forms) that angular momentum balance implies symmetry of the
Cauchy stress.

4-13. Let a body B in the current configuration occupy a region R defined with reference to a fixed
orthonormal basis {e1, e2, e3} as

R =
{
(x1, x2, x3) | | x1 |≤ a , | x2 |≤ a , | x3 |≤ b

}
,

where a and b are positive constants. In addition, let the components of the Cauchy stress
tensor be specified on R at a given time t by

T11 = −T22 = − q

a2
(x21 − x22) ,

T12 =
2q

a2
x1x2 ,

T23 = T31 = T33 = 0 ,

where q is a non-zero constant.

(a) Determine the traction that should be applied on ∂R in order to maintain the above
stress field.

(b) Calculate the resultant force and the resultant moment with respect to the origin acting
on the faces x1 = a and x2 = −a.

(c) Assuming that the body is at rest, show that the above stress field can be maintained
without the application of any body forces.

4-14. Let the components of the Cauchy stress tensor for a body at time t be of the form

(Tij) =





0 cx3 0
cx3 dx2 −cx1
0 −cx1 0



 ,

where c and d are constants.

(a) Determine the body forces required so that balance of linear momentum is satisfied,
assuming that the body is at rest.

(b) At the location x = 4e1 + 7e2 − 4e3, calculate the stress vector acting on the planar
surface −x1 + 2x2 + 2x3 = 2 and on the spherical surface x21 + x22 + x23 = 81.

4-15. Let the components of the velocity v be

v1 = x1x2x3t , v2 = x3x1t , v3 = x23

and the components of the stress be

[Tij ] =





x21 −x1x2 0
−x2x1 x22−1 x2

0 x2 x23



 ,

in terms of a fixed orthonormal basis {ei} in the given configuration of the body.
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(a) Find the components of the body force needed to enforce linear momentum balance of
the body in this configuration.

(b) Find the components of the traction t(n) at a point with coordinates (x1, x2, x3) =
(1, 1, 0) on the plane with outward unit normal having components (n1, n2, n3) =
1√
3
(1, 1, 1).

(c) Find the maximum shear at (x1, x2, x3) = (1, 0, 0) and the components of the unit
normal to the plane on which the maximum shear is attained.

4-16. Recall that the stress vector t(n) can be decomposed into normal and shearing components,
according to

t(n) = Nn + Ss , s · s = 1 ,

where
N = t(n) · n

and
S = | t(n) − (t(n) · n)n | .

(a) Let Ti and ni be, respectively, the three principal stresses of T and the associated prin-
cipal stress directions. Consider a coordinate system whose orthonormal basis vectors ēi
are parallel to ni. In addition, let the principal stresses Ti be distinct and, without loss
of generality, assume that T1 > T2 > T3. Show that

N = T1n̄
2
1 + T2n̄

2
2 + T3n̄

2
3 ≤ T1

S =
[
T 2
1 n̄

2
1 + T 2

2 n̄
2
2 + T 2

3 n̄
2
3 − (T1n̄

2
1 + T2n̄

2
2 + T3n̄

2
3)

2
]1/2

,

where n is expressed as n = n̄iēi.

(b) Show that

n̄21 =
S2 + (N − T2)(N − T3)

(T1 − T2)(T1 − T3)
,

n̄22 =
S2 + (N − T3)(N − T1)

(T2 − T3)(T2 − T1)
,

n̄23 =
S2 + (N − T1)(N − T2)

(T3 − T1)(T3 − T2)
.

(c) Use the results of part (b) to deduce the relations

S2 +
(

N − T2 + T3
2

)2
≥

(T2 − T3
2

)2
,

S2 +
(

N − T3 + T1
2

)2
≤

(T3 − T1
2

)2
,

S2 +
(

N − T1 + T2
2

)2
≥

(T1 − T2
2

)2
.

Interpret the above inequalities geometrically in the S−N plane (that is, obtain Mohr’s

stress representation).
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(d) Determine the maximum shearing stress as a function of the principal stresses and find
the plane on which it acts. Also, determine the normal stress on this plane.

(e) Clearly explain how the results obtained in parts (a)–(d) are affected if: (i) T1 = T2 >
T3, or (ii) T1 = T2 = T3.

4-17. The components of the Cauchy stress tensor T at a point x and time t are given by

(Tij) = c





1 1 1
1 1 1
1 1 1



 , (†)

where c is a non-zero constant.

(a) Find the three principal invariants of T at (x, t).

(b) Calculate the principal stresses and the associated principal stress directions.

(c) Determine the maximum shear and the plane on which it acts.

(d) Identify the simple stress state described by (†).

4-18. Consider a body at rest so that it occupies the region R at all times.

(a) Show that
∫

∂R
t⊗ x da =

∫

R

[
divT⊗ x + T

]
dv .

(b) Let the mean Cauchy stress tensor T̄ over the region R be defined as

T̄ =
1

vol (R)

∫

R
T dv ,

where vol (R) denotes the volume of the region R. Use the result of part (a) and balance
of angular momentum to show that

2 vol (R) T̄ =

∫

∂R
(t⊗ x + x⊗ t) da +

∫

R
ρ(b⊗ x + x⊗ b) dv .

The above result is known as Signorini’s theorem. Provide a physical interpretation of
the theorem.

(c) The configuration of a body at rest is depicted in the figure below. In addition, assume
that b = 0, and

t = −p1n on ∂P1 ,

t = −p2n on ∂P2 ,

where p1 and p2 are positive constants and n is the outward unit normal to ∂P1 or ∂P2.

Show that T̄ is a hydrostatic pressure of magnitude

p1 vol (P1) − p2 vol (P2)

vol (P2) − vol (P1)
,

where vol (P1) and vol (P2) are the volumes enclosed by ∂P1 and ∂P2, respectively.
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n

∂P2

P2

n

P1

∂P2

4-19. Let T be the Cauchy stress tensor at a point x, and denote its three principal stresses and
the associated principal directions by Ti and ni, respectively. Define the octahedral plane
at x by means of its outward unit normal n̂, given by

n̂ =
1√
3
(n1 + n2 + n3) .

(a) Show that

t(n̂) =
1√
3
(T1n1 + T2n2 + T3n3) .

(b) Let ŝ be a unit vector on the octahedral plane, such that

t(n̂) = Noctn̂ + Soctŝ ,

where Noct and Soct > 0 represent the magnitudes of the normal and the shearing stress,
known as the octahedral normal and octahedral shear stress, respectively. Show that

Noct =
1

3
trT ,

which implies that Noct is a scalar invariant.

(c) Show that the magnitude of the shearing component of t(n̂) can be expressed as

Soct =
1

3

{

(T1 − T2)
2 + (T2 − T3)

2 + (T3 − T1)
2
}1/2

=
{1

3
(T 2

1 + T 2
2 + T 2

3 ) − 1

9
(T1 + T2 + T3)

2
}1/2

.

Argue from the above result that Soct is also a scalar invariant.

4-20. Let the Cauchy stress tensor T be additively decomposed into two parts according to

T = T′ +
1

3
T̄ I ; Tij = T ′

ij +
1

3
T̄ δij , (†)

so that trT′ = 0. In this case, T′ is called a deviatoric tensor, and 1
3 T̄ I a spherical tensor.

(a) Show that
trT = T̄ .
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(b) Argue that for each T, there exist a unique scalar T̄ and a unique tensor T′, such that
(†) hold.

(c) Prove that the tensors T and T′ are coaxial, namely that they share the same eigen-
vectors. Also, find the relation between their respective eigenvalues.

(d) Let the rate of deformation tensor be expressed as

D = D′ + D̄I ; Dij = D′
ij + D̄δij ,

where, again, trD′ = 0. Show that the stress power can be also additively decomposed
according to

T ·D = T′ ·D′ + T̄ D̄ .

4-21. Show that invariance under superposed rigid-body motions of the local statement of mass
balance in the spatial description leads to the conclusion that ρ+ = ρ.

4-22. The Biot stress tensor S(1) is defined as

S(1) =
1

2
(RTP + PTR) ; S

(1)
AB =

1

2
(RiAPiB + PiARiB) ,

where R is the rotation tensor obtained from the polar decomposition of the deformation
gradient tensor F (= RU), and P is the first Piola-Kirchhoff stress tensor. Show that S(1) is
work-conjugate to the right stretch tensor U.

4-23. Recall that, under a superposed rigid-body motion

x+ = Q(t)x + c(t) ,

the Cauchy stress tensor T transforms according to

T+ = QTQT ,

which implies that T is an objective Eulerian tensor.

(a) Show that the material time derivative Ṫ of the Cauchy stress tensor is not an objective
Eulerian tensor.

(b) Let the Jaumann25 (or co-rotational) rate of the Cauchy stress tensor be defined as

◦
T = Ṫ + TW − WT ,

where W is the vorticity tensor. Show that
◦
T is an objective Eulerian tensor.

(c) Let the Cotter-Rivlin (or convected) rate of the Cauchy stress tensor be defined as

△

T = Ṫ + LTT + TL ,

where L is the velocity gradient tensor. Show that
△

T is an objective Eulerian tensor.

25Gustav Jaumann (1863-1924) was an Austrian physicist.

ME185



Exercises 155

(d) Let the Truesdell stress rate
⊲
T be defined as

⊲
T = Ṫ− LT−TLT +T(trD) ,

where L is the spatial velocity gradient and D the rate of deformation tensor. Show that
⊲
T = 1

J FṠFT and conclude from this relation that
⊲
T is an objective Eulerian tensor.

(e) Let the Green-McInnis rate of the Cauchy stress tensor be defined as

�

T = Ṫ − ṘRTT + TṘRT ,

whereR is the rotation tensor obtained from the polar decomposition of the deformation

gradient F. Show that
�

T is an objective Eulerian tensor.

(f) Argue that the any Eulerian tensor of the form

α
◦
T + (1 − α)

△

T , α ∈ R

is also objective.

(g) Use the result in part (f) to directly conclude that the Oldroyd rate of the Cauchy stress
tensor, defined as

▽

T = Ṫ − LT − TLT ,

is objective.

4-24. Recall that the heat flux h = h(x, t ; n) through a surface with outward unit normal n at a
point x has been shown to satisfy the condition

h(x, t ; n) = − h(x, t ; −n) ,

for any given time t. Use the standard Cauchy tetrahedron argument to show that there
exists a vector q = q(x, t), such that

h = q · n .

Provide full details of the derivation, including all assumptions on smoothness of the various
fields that appear in your arguments.

4-25. (a) Let a vector be expressed in the current configuration as v = ṽ(x). The Piola transform

of v is another vector v0 = v̂0(X), defined in the reference configuration by

v0 = JF−1v .

Prove that
Div v0 = J divv ,

where “Div” and “div” are the divergence operators relative to the reference and current
configuration, respectively.
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(b) Let a tensor be expressed in the current configuration asT = T̃(x). The Piola transform

of T is another tensor T0 = T̂0(X), defined in the reference configuration by

T0 = JTF−T .

Prove that
DivT0 = J divT .

(c) Provide physical interpretations of the Piola transforms in parts (a) and (b) involving
the fluxes v · n and Tn, when v and T are interpreted as velocity and Cauchy stress,
respectively.

4-26. Starting from the local statement of the energy equation in spatial form, as in (4.169), deduce
directly its referential counterpart in the form

ρ0ǫ̇ = P · Ḟ+ ρ0r −Div q0 ,

where q0 is the Piola transform of q.

4-27. Let P be a region in 3-dimensional space occupied by a continuum of mass density ρ and
velocity v.

(a) Starting from an integral statement of mass balance over the region P, employ Reynolds’
transport theorem to show that

∂

∂t

∫

P
ρ dv +

∫

∂P
ρv · n da = 0 ,

where n is the outward unit normal to the boundary ∂P of the region P.

(b) Assume that the continuum has velocity components

v1 = x1 , v1 = 2x2 , v3 = 3x3 ,

where xi, i = 1, 2, 3, are the components of the position vector x of a point relative to a
fixed orthonormal basis {ei, i = 1, 2, 3}. Further, assume that the mass density ρ of the
continuum is spatially homogeneous, i.e., ρ = ρ(t). Invoke mass balance to determine
the mass density ρ(t), as a function of the referential mass density ρ0 at time t = 0.

(c) Let the continuum be a unit cube, as in the figure below.

Use the result of part (b) to determine the rate of change of mass contained in the fixed
region P.

(iv) Invoke again part (ii) to determine the flux of mass through the six 6 lateral surfaces
of the cube. Is your result consistent with the identity derived in part (a)?

4-28. (a) Consider a continuum that is in equilibrium at the absence of body forces and occupies

a region R at time t. Show that the mean Cauchy stress T̄, defined as T̄ =
1

V

∫

RT dv

in terms of the volume V of R, is related to the surface traction t on the boundary ∂R
according to

V T̄ =

∫

R
t⊗ x da . (†)
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0

3

1

2

(b) Consider a collection of n particles in equilibrium under the influence of external forces
Fα
e , α = 1, 2, . . . , n, and internal (i.e., interaction) forces Fα

i , α = 1, 2, . . . , n. Show that

N∑

α=1

[Fα
e ⊗ xα + Fα

i ⊗ xα] = 0 , (‡)

where xα, α = 1, 2, . . . , n are the position vectors of the particles.

(c) Suppose that one wishes to approximate the continuum of part (a) with the collection
of particles in part (b). Within such an approximation, which terms of the equations
(†) and (‡) correspond to each other?

4-29. Recall the local statement of mass balance in the form

ρ̇+ ρdivv = 0 ,

where ρ is the mass density and v is the velocity vector.

(a) Show that mass balance may be alternatively stated in a so-called conservative form as

∂ρ

∂t
+ div (ρv) = 0 .

In what sense may the preceding form be interpreted as “conservative”?

(b) Recall that, in the absence of volumetric heat supply, the energy equation is written as

ρε̇ = T ·D− divq ,

where ε is the internal energy per unit mass, T is the Cauchy stress tensor, D is the
rate-of-deformation tensor, and q is the heat flux vector.

Use the result of part (a) to establish that the preceding equation may be recast in the
form

∂

∂t
(ρε) + div (ρεv) = T ·D− div q
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(c) Starting from the result of part (b) and assuming the vanishing of any body forces,
invoke linear momentum balance and use the result of part (a) to argue that the energy
equation is also expressible in conservative form as

∂

∂t
(ρE) + div (ρEv + q−Tv) = 0 .

Here, E is the total internal energy per unit mass, defined as E = ε+ 1
2v · v.

4-30. Let a body in the current configuration occupy a region R, and suppose that the components
of the Cauchy stress tensor T with respect to a fixed orthonormal basis {e1, e2, e3} are of
the form

(Tij) =





0 0 ax2 + x21x2
0 0 bx1 − x1x

2
2

ax2 + x21x2 bx1 − x1x
2
2 0



 ,

where a and b are undetermined positive constants. In addition, assume that the body is at
rest.

(a) Conclude that balance of linear momentum is satisfied in the absence of body forces.

(b) Let R be defined as

R =
{
(x1, x2, x3) ∈ E3 | | x1 |≤ w , | x2 |≤ h , 0 ≤ x3 ≤ l

}
,

where w, h and l are positive constants. Determine a and b by requiring that the faces
x1 = ±w and x2 = ±h be traction-free.

(c) Use the component form of T obtained in part (ii) to determine the resultant forces
and moments acting on the faces x3 = 0 and x3 = l. Also, exhibit these resultants on
a sketch of R.

4-31. Derive the referential expressions (4.182) and (4.183) from the corresponding spatial expres-
sions (4.179) and (4.181).
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Chapter 5

Infinitesimal Deformations

The development of kinematics and kinetics presented up to this point does not require

any assumptions on the magnitude of the various measures of deformation. In many real-

istic circumstances, solids may undergo “small” (or “infinitesimal”) deformations. In these

cases, the mathematical representation of kinematic quantities and the associated kinetic

quantities, as well as the balance laws, may be substantially simplified.

In this chapter, the special case of infinitesimal deformations is discussed in detail. Pre-

liminary to this discussion, it is instructive to formally define the meaning of “small” or

“infinitesimal” changes of a function. To this end, consider first a real-valued function

f = f(x) of a real variable x, which is assumed to be twice differentiable. To analyze this

function in the neighborhood of x = x0, one may use a Taylor series expansion at x0 with

remainder, in the form

f(x0 + v) = f(x0) + vf ′(x0) +
v2

2!
f ′′(x̄) , (5.1)

where v is a change to the value of x0 and x̄ ∈ (x0, x0 + v). Denoting by ε the magnitude of

the difference between x0 + v and x0, that is, ε = |v|, it follows that as ε → 0 (therefore, as

v → 0), the scalar f(x0 + v) is satisfactorily approximated by the linear part of the Taylor

series expansions in (5.1), namely

f(x0 + v)
.
= f(x0) + vf ′(x0) . (5.2)

Recalling the expansion (5.1), one may say that ε = |v| is “small”, when the term
v2

2!
f ′′(x̄)

can be neglected in this expansion without appreciable error, that is, when
∣
∣
∣
∣

v2

2!
f ′′(x̄)

∣
∣
∣
∣
≪ |f(x0 + v)| , (5.3)
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assuming that f(x0 + v) 6= 0.

5.1 The Gâteaux differential

Linear expansions of the form (5.2) can be readily obtained for a general class of functions

using the Gâteaux differential. Specifically, given F = F(X), where F is a sufficiently smooth

real-, vector- or tensor-valued function of a real, vector or tensor variable X, the Gâteaux

differential DF(X0,V) of F at X = X0 in the direction V is defined as

DF(X0,V) =

[
d

dω
F(X0 + ωV)

]

ω=0

, (5.4)

where ω is a scalar. Then, it can be shown that

F(X0 +V) = F(X0) +DF(X0,V) + o(|V|2) , (5.5)

where the term o(|V|2) satisfies

lim
|V|→0

o(|V|2)
|V| = 0 . (5.6)

The linear part L[F;V]X0
of F at X0 in the direction V is then defined as

L[F;V]X0
= F(X0) +DF(X0,V) . (5.7)

Example 5.1.1: Gâteaux differentials of simple functions
Let F(X) = f(x) = x2. Using the definition in (5.4),

Df(x0, v) =

[
d

dω
f(x0 + ωv)

]

ω=0

=

[
d

dω
(x0 + ωv)2

]

ω=0

=

[
d

dω
(x2

0 + 2x0ωv + ω2v2)

]

ω=0

=
[
2x0v + 2ωv2

]

ω=0

= 2x0v .

Hence,
L[f ; v]x0

= x2
0 + 2x0v .
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(a)(b) Let F(X) = φ(x) = x · x. Using, again, the definition in (5.4), it follows that

Dφ(x0,v) =

[
d

dω
φ(x0 + ωv)

]

ω=0

=

[
d

dω

{

(x0 + ωv) · (x0 + ωv)
}]

ω=0

=

[
d

dω
(x0 · x0 + 2ωx0 · v + ω2v · v)

]

ω=0

= 2x0 · v .

This means that
L[φ;v]x0

= x0 · x0 + 2x0 · v .

(c) Let F(X) = T(x) = x⊗ x. Using, one more time, the definition in (5.4),

DT(x0,v) =

[
d

dω
T(x0 + ωv)

]

ω=0

=

[
d

dω

{

(x0 + ωv)⊗ (x0 + ωv)
}]

ω=0

=

[
d

dω

{

x0 ⊗ x0 + ω(x0 ⊗ v + v ⊗ x0) + ω2v ⊗ v
}]

ω=0

= [(x0 ⊗ v + v ⊗ x0) + 2ωv⊗ v]ω=0

= x0 ⊗ v + v ⊗ x0 .

It follows that
L[T;v]x0

= x0 ⊗ x0 + x0 ⊗ v + v ⊗ x0 .

5.2 Consistent linearization of kinematic and kinetic

variables

Preliminary to the ensuing development, assume that the two orthonormal bases {EA} and

{ei} associated respectively with the reference and current configuration are coincident. In

this case, the position vector x of a material point P in the current configuration can be

written as the sum of the position vector X of the same point in the reference configuration

plus the displacement u of the point from the reference to the current configuration, that is,

x = X+ u , (5.8)
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as shown in Figure 5.1. As usual, the displacement vector field can be expressed equivalently

xX
RR0

u

{EA} = {ei}

Figure 5.1. Displacement vector u of a material point with position X in the reference config-

uration.

in referential or spatial form as

u = û(X, t) = ũ(x, t) . (5.9)

It follows from (3.35) that the deformation gradient can be written as

F =
∂χ

∂X
=

∂(X+ û)

∂X
= I+

∂û

∂X
= I+H , (5.10)

where H is the relative displacement gradient tensor defined by

H =
∂û

∂X
. (5.11)

Clearly, H quantifies the deviation of F from the identity tensor, see also Exercise 3-10.

Recalling the discussion in Section 5.1, a linearized counterpart of a given kinematic

measure is obtained by first expressing the kinematic measure in terms of H as F̄(H) and,

then, by expanding F̄(H) about the reference configuration, where H = 0. This leads to

F̄(H) = F̄(0) +DF(0,H) + o(|H|2) , (5.12)

where, as usual, |H| = (H · H)1/2. Taking into account (5.7) and (5.12), the linear part

L(F;H)0 of F in the direction of H about the reference configuration is given by

L(F;H)0 = F̄(0) +DF(0,H) . (5.13)

A suitable global measure of the magnitude for the deviation of F from the identity can

be defined as

ε = ε(t) = sup
X∈R0

|H(X, t)| , (5.14)
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where “sup” denotes the least upper bound of |H(X, t)| over all points X in the reference

configuration at time t. Now, one may say that the deformations are small (or infinitesimal)

at a given time t if ε is small enough so that the term o(|H|2) can be neglected when compared

with F̄(H).

Next, proceed to obtain infinitesimal counterparts of some standard kinematic fields,

starting with the deformation gradient F. To this end, recall (5.10) and write F = F̄(H) =

I+H. Then, the Gâteaux differential of F in the direction H is

DF(0,H) =

[
d

dω
F̄(0+ ωH)

]

ω=0

=

[
d

dω
(I+ ωH)

]

ω=0

= H . (5.15)

Hence, the linear part of F in H is

L[F;H]0 = F̄(0) +DF(0,H) = I+H . (5.16)

Effectively, equation (5.16) shows that the linear part of F in H is F itself, which should be

also obvious from equation (5.10).

Recall next that FF−1 = i, and take the linear part of both sides in the direction of H.

This leads to

L[FF−1;H]0 = F̄(0)F̄−1(0) +D(FF−1)(0,H) = L[i;H]0 = i , (5.17)

where, using (5.15) and the product rule,

D(FF−1)(0,H) = DF(0,H)F̄−1(0) + F̄(0)DF−1(0,H)

= H+DF−1(0,H) = Di(0,H) = 0 .
(5.18)

The preceding equation implies that

DF−1(0,H) = −H . (5.19)

Hence, the linear part of F−1 at H = 0 in the direction H is

L[F−1;H]0 = I−H . (5.20)

Next, consider the linear part of grad ũ, that is, the spatial displacement gradient. First,

observe that, using the chain rule,

grad ũ = (Grad û)F−1 = (F− I)F−1 = i− F−1 , (5.21)
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therefore

grad ũ = gradu(H) = i− (I+H)−1 . (5.22)

Taking into account (5.19) and (5.21), this implies

D(gradu)(0,H) = −DF−1(0,H) = H . (5.23)

As a result,

L[gradu;H]0 = gradu(0) +D(gradu)(0,H) = 0 +H = H . (5.24)

The last result shows that the linear part of the spatial displacement gradient grad ũ coincides

with the referential displacement gradient Grad û(= H). This, in turn, implies that, within

the context of infinitesimal deformations, there is no difference between the partial derivatives

of the displacement u with respect to X or x. This further implies that the distinction

between the spatial and referential description of deformation-related quantities becomes

immaterial in the case of infinitesimal deformations.

To determine the linear part of the right Cauchy-Green deformation tensor C in (3.51),

write

C = C̄(H) = (I+H)T (I+H) = I+H+HT +HTH . (5.25)

Then,

DC(0,H) =

[
d

dw
C̄(0+ wH)

]

w=0

=

[
d

dw

{
I+ w(H+HT ) + w2HTH

}
]

w=0

=
[
H+HT + 2wHTH

]

w=0

= H+HT . (5.26)

Consequently, the linear part of C at H = 0 in the direction H is

L[C;H]0 = C̄(0) +DC(0,H) = I+ (H+HT ) . (5.27)

Likewise, the left Cauchy-Green deformation B in (3.57) is written as

B = B̄(H) = (I+H)(I+H)T = I+H+HT +HHT , (5.28)
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hence,

DB(0,H) =

[
d

dw
B̄(0+ wH)

]

w=0

=

[
d

dw

{
I+ w(H+HT ) + w2HHT

}
]

w=0

=
[
H+HT + 2wHHT

]

w=0

= H+HT . (5.29)

therefore,

L[B;H]0 = B̄(0) +DB(0,H) = i+ (H+HT ) . (5.30)

It is clear from (5.27) and (5.30) that the symmetry of C and B is preserved in the respective

linear parts. The same equations imply that the linear parts of C and B with respect to the

reference configurations are equal, since the two identity tensors i and I become identical

when the basis vectors {ei} and {EA} coincide.

Recalling (3.60) and using (5.26), it can be immediately concluded that the linear part

of the Lagrangian strain tensor E is

L [E;H]0 =
1

2
(H+HT ) . (5.31)

At the same time, the Eulerian strain tensor e in (3.63) can be written as

e = ē(H) =
1

2

(
i− F̄−T (H)F̄−1(H)

)
, (5.32)

hence, with the aid of (5.19) and the product rule, its Gâteaux differential is given becomes

De(0,H) = −1

2

(
DF−T (0,H)F̄−1(0) + F̄−T (0)DF−1(0,H)

)

= −1

2

(
DF−T (0,H) +DF−1(0,H)

)
=

1

2
(H+HT ) , (5.33)

given that F̄−1(0) = I. This means that the linear part of e is equal to

L[e;H]0 = ē(0) +De(0,H) =
1

2
(H+HT ) . (5.34)

It is clear from (5.31) and (5.34) that the linear parts of the Lagrangian and Eulerian strain

tensors coincide. Hence, under the assumption of infinitesimal deformations, the distinction

between the two strains ceases to exist and one simply writes that

L[E;H]0 = L[e;H]0 =
1

2
(H+HT ) = ε , (5.35)
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where ε is the classical infinitesimal strain tensor, with components εij =
1
2
(ui,j + uj,i).

Proceed next with the linearization of the right stretch tensor U. To this end, recall (3.69)

and use (5.25) to write

U2 = C = I+H+HT +HTH , (5.36)

so that, with the aid of (5.26) and the product rule,

DU2(0,H) = DU(0,H)Ū(0) + Ū(0)DU(0,H) = 2DU(0,H) = H+HT , (5.37)

since Ū(0) = I. It follows from (5.37) that

L [U;H]
0

= Ū(0) +DU(0,H) = I+
1

2
(H+HT ) . (5.38)

Repeating the procedure used earlier in this section to determine the Gâteaux differential

of F−1, one easily finds that the corresponding differential for U−1 is

DU−1(0,H) = −1

2
(H+HT ) , (5.39)

therefore

L
[
U−1;H

]

0
= I− 1

2
(H+HT ) . (5.40)

It is now possible to determine the linear part of the rotation tensor R, written, with the

aid of (3.65), as

R = R̄(H) = F̄(H)Ū−1(H) , (5.41)

by first obtaining the Gâteaux differential of R as

DR(0,H) = DF(0,H)Ū−1(0) + F̄(0)DU−1(0,H) = DF(0,H) +DU−1(0,H)

= H− 1

2
(H+HT ) =

1

2
(H−HT ) , (5.42)

where use is made of (5.15) and (5.39). Then, one may write

L [R;H]
0

= R̄(0) +DR(0,H) = I+
1

2
(H−HT ) . (5.43)

When H is small, the tensor

ω =
1

2
(H−HT ) (5.44)

is called the infinitesimal rotation tensor and has components ωij =
1
2
(ui,j − uj,i).
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Next, derive the linear part of the Jacobian J of the deformation gradient. To this end,

recall (2.47) and observe that

D(detF)(0,H) =

[
d

dω
det F̄(ωH)

]

ω=0

=

[
d

dω
det(I+ ωH)

]

ω=0

=

[
d

dω
det
{

ω
[
H− (− 1

ω
)I
]}
]

ω=0

=

[
d

dω

{

ω3
[
−(− 1

ω
)3 + IH(−

1

ω
)2 − IIH(−

1

ω
) + IIIH

]}
]

ω=0

=

[
d

dω

(
1 + ωIH + ω2IIH + ω3IIIH

)
]

ω=0

= IH = trH , (5.45)

where IH , IIH , and IIIH are the three principal invariants of H. This, in conjunction

with (5.35), leads to

L[detF;H]0 = det F̄(0) +D(detF)(0,H) = 1 + trH = 1 + tr ε . (5.46)

The balance laws themselves are subject to linearization. For instance, the referential

statement of mass balance (4.39) may be linearized to yield

L[ρ0;H]0 = L[ρJ ;H]0 . (5.47)

This means that

ρ0 = ρ̄(0)J̄(0) +Dρ(0,H)J̄(0) + ρ̄(0)DJ(0,H) . (5.48)

Since conservation of mass is assumed to hold in all configurations (therefore also in the

reference configuration), it follows that

ρ0 = ρ̄(0)J̄(0) = ρ̄(0) , (5.49)

since J̄(0) = det I = 1. Thus, equation (5.48), with the aid of (5.45) results in

Dρ(0,H) + ρ0(0) tr ε = 0 , (5.50)

or, equivalently,

Dρ(0,H) = −̺0 tr ε . (5.51)
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The linear part of the mass density relative to the reference configuration now takes the form

L[ρ;H]0 = ρ̄(0) +Dρ(0,H) = ρ0(1− tr ε) . (5.52)

Equation (5.52) reveals that the linearized mass density does not coincide with the mass

density of the reference configuration.

The linearization of linear momentum balance will be discussed in Section 6.6.

5.3 Exercises

5-1. Find the linear part of the unit vector
x

|x| at x0 in the direction v.

5-2. Recall that an infinitesimal material line element dX in the reference configuration of a body
can be written as

dX = M dS ,

in terms of the unit vector M in the direction of dX. Due to the motion, the above line
element is mapped to dx in the current configuration, such that

dx = m ds ,

where m is a unit vector in the direction of dx.

(a) Show that the linear part of ds/dS with respect to the reference configuration is given
by

L[ds/dS ; H]0 = 1 + M · εM ,

where ε = 1
2(H + HT ) and H is the relative displacement gradient tensor.

(b) Show that the linear part of m with respect to the reference configuration is given by

L[m ; H]0 =
[
(1 − M · εM)I + H

]
M .

5-3. Recall that an infinitesimal material area element dA with outer unit normal N in the refer-
ence configuration is mapped to an infinitesimal area element da with outer unit normal n
in the current configuration, such that

nda = JF−TNdA ,

where F is the deformation gradient tensor and J = detF.

(a) Show that the linear part of da/dA with respect to the reference configuration is given
by

L[da/dA ; H]0 = 1 + tr ε − N · εN ,

where ε = 1
2(H + HT ) and H is the relative displacement gradient tensor.
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(b) Show that the linear part of n with respect to the reference configuration is given by

L[n ; H]0 =
[
(1 + N · εN)I − HT

]
N .

5-4. Recall that the referential displacement gradient tensor is given by

H =
∂u

∂X
= F − I

and define the tensors ε and ω as

ε =
1

2
(H+HT ) , ω =

1

2
(H−HT ) .

(a) Show that the Lagrangian strain tensor E can be expressed as

E = ε +
1

2
(ε2 + εω − ωε − ω

2) . (†)

(b) Discuss how E, ε and ω transform under a rigid motion superposed on the continuum,
namely when

x+ = Qx+ c ,

where Q(t) is a proper orthogonal tensor-valued function of t and c(t) is a vector-valued
function of t.

(c) Indicate the reduction that takes place in the formula (†) in the context of infinitesimal
kinematics. Are the invariance requirements of part (b) satisfied in the infinitesimal
theory?

5-5. Consider a two-dimensional body which undergoes the homogeneous deformation illustrated
in the figure.

1

1 u1

u2

E1, e1

E2, e2
R0 R

(a) Determine the components of the deformation gradient F, the Lagrangian strain E, and
the stretch λ along the direction M = 1√

2
(E1 + E2) in terms of the displacements u1

and u2.
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(b) Determine the components of the linearized counterparts of the same kinematic quan-
tities as in part (a), again in terms of the displacements u1 and u2.

(c) Compare the results in parts (a) and (b) and argue that they are consistent with the
linearization of functions in two variables (here, u1 and u2).

5-6. Let (E1,E2) be a pair of orthonormal vectors in E3 and recall that, under the influence of the
deformation gradient F, they transform to a pair (FE1,FE2), so that the angle θ between
the transformed vectors satisfies the relation

cos θ =
FE1

|FE1|
· FE2

|FE2|
.

Using consistent linearization in the direction H, show that the linear part of cos θ, as defined
above, equals the engineering shear strain γ12 = u1,2 + u2,1.

ME185



Chapter 6

Constitutive Theories

6.1 General requirements

In this chapter, attention is focused on the special case where all thermal effects are ne-

glected (that is q = 0, r = 0). Consequently, the balance of energy in (4.169) simply implies

that the stress power balances the rate of change of the internal energy and does not de-

termine (or even affect) the stress. This is the case of a purely mechanical (as opposed to

thermomechanical or purely thermal) process.

The balance laws for purely mechanical processes furnish a total of seven equations (one

from mass balance, three from linear momentum balance, and three from angular momen-

tum balance) to determine thirteen unknowns, that is, the mass density ρ, the position x

(or velocity v) and the stress tensor (e.g., the Cauchy stress T). Clearly, without addi-

tional equations this system lacks closure, that is, it cannot lead to a determinate solution.

The latter is established by constitutive equations, which relate the stress to the kinematic

variables and the mass density.

Before accounting for any possible restrictions or reductions, let a reasonably general

constitutive equation for the Cauchy stress at a point x at time t be written as

T(x, t) = T̂
(
H
τ≤t

[F(X, τ)], H
τ≤t

[GradF(X, τ)], . . . , ρ
)

(6.1)

or, in rate form, as

Ṫ(x, t) = ˆ̇T
(
( H
τ≤t

[F(X, τ)], H
τ≤t

[GradF(X, τ)], . . . ,T, ρ
)
. (6.2)

In equation (6.1), T̂ is a (Cauchy) stress response function, while correspondingly in equa-

tion (6.2), ˆ̇T is a (Cauchy) stress-rate response function. Also, the terms H
τ≤t

[F(X, τ)] and
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H
τ≤t

[GradF(X, τ)] represent the total history of the deformation gradient and the referential

gradient of the deformation gradient up to (and including) time t for a given material point

occupying the point X in the reference configuration. Analogous general functional repre-

sentations may be formulated for other stress measures, such as P and S. A special case of

the preceding constitutive laws arises when the stress or stress rate at time t depend only

on variables at the same time.

A number of restrictions may be placed on the preceding equations on mathematical or

physical grounds. Some of these restrictions appear to be universally adopted, while others

are relaxed for certain constitutive laws. Five of these restrictions are reviewed below.

First, constitutive laws are expected to be dimensionally consistent. This simply means

that the physical dimensions of the left- and right-hand sides in (6.1) or (6.2) must be the

same.

Example 6.1.1: Dimensional consistency of a simple constitutive law for stress
Consider the constitutive law of the form

T = αB ,

where α is a material parameter. Dimensional consistency necessitates that α have physical
dimensions of stress (or [ML−1

T
−2] in terms of mass M, length L, and time T), since B is

dimensionless.

Second, constitutive laws need to tensorially consistent in their representation. This

means that the right-hand sides of (6.1) and (6.2) should be tensor-valued mathemati-

cal expressions resolved naturally on the Eulerian basis {ei ⊗ ej} to maintain consistency

with the left-hand sides (that is, T and Ṫ), which are naturally resolved on the same ba-

sis.

Example 6.1.2: Tensorial consistency of a simple constitutive law for stress
Consider the constitutive law of the form

T = βF ,

where β is a material parameter. Tensorial consistency would disallow this constitutive law
because F is a two-point tensor, while T is an Eulerian tensor.

A third restriction is placed by locality , that is, the assumption that the stress at a

point should only depend on quantities defined at that point and not in any other points.
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Example 6.1.3: A non-local constitutive law for stress
The constitutive law

T(x, t) = γ

∫

Pδ(x)

e(y, t) dv

where γ is a material parameter and Pδ(x) is a sphere of radius δ > 0 centered at x, violates
locality. Still, such a constitutive law may be meaningful for some special class of materials.

A fourth restriction, often referred to as determinism, requires that the stress at time t

be prescribed as a function of quantities at time t or earlier (but not later) times. Clearly,

the constitutive equations (6.1) and (6.2) satisfy the restriction of determinism.

The fifth source of restrictions is the postulate of invariance under superposed rigid-body

motions, which is most often assumed to apply to constitutive laws. According to this

postulate, the response functions T̂ and ˆ̇T in (6.1) and (6.2) must remain unaltered under

superposed rigid-body motions. This means that

T+(x+, t) = T̂
(
H
τ≤t

[F+(X, τ)], H
τ≤t

[GradF+(X, τ)], . . . , ρ+
)

(6.3)

and, likewise,

Ṫ+(x+, t) = ˆ̇T
(
( H
τ≤t

[F+(X, τ)], H
τ≤t

[GradF+(X, τ)], . . . ,T+, ρ+
)
. (6.4)

Note that both the stress T in (6.3) and the stress rate Ṫ in (6.4) are transformed to their

counterparts under superposed rigid-body motions, and all the arguments in the response

functions T̂ and ˆ̇T are likewise transformed. However, invariance of the constitutive laws

under superposed rigid-body motions means that the response functions themselves remain

unchanged, which is indeed the case in (6.3) and (6.4).

Example 6.1.4: Invariance of a simple constitutive law for stress
In this example, the postulate of invariance under superposed rigid-body motions is explored
for a special case of (6.1), in which

T = T̂(F) . (6.5)

Here, invariance necessitates that
T+ = T̂(F+) . (6.6)
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Taking into account (3.175), (4.204), and (6.5), equation (6.6) leads to

QT̂(F)QT = T̂(QF) , (6.7)

for all proper orthogonal tensors Q. Clearly, equation (6.7) places a restriction on the func-
tion T̂. The ramifications of this restriction will be discussed in detail in Section 6.5.

Example 6.1.5: Invariance of a simple constitutive law for stress rate
Here, a special case of the constitutive law (6.2) is considered, in which

Ṫ = ˆ̇T(F) . (6.8)

Now, invariance under superposed rigid-body motions implies that

Ṫ+ = ˆ̇T(F+) . (6.9)

Recalling (3.175) and (4.204), it follows that

˙
QTQT = ˆ̇T(QF) , (6.10)

which, with the aid of (6.8), may be expanded to

Q̇TQT +Q ˆ̇T(F)QT +QTQ̇T = ˆ̇T(QF) , (6.11)

or, alternatively, to

ΩT+ +Q ˆ̇T(F)QT −T+Ω = ˆ̇T(QF) , (6.12)

where use is also made of (3.179). Equation (6.11) places an untenable restriction on the

response function ˆ̇T owing to the explicit presence of the variable T+, which is independent

of ˆ̇T. Therefore, the constitutive law (6.8) violates invariance under superposed rigid-body
motions.

One way to enforce invariance is to revise (6.8) in a manner that eliminates the additional
stress terms that appear on the left-hand side of (6.11) or (6.12). To this end, one may
postulate a constitutive law of the form

Ṫ+TW −WT = ˆ̇T(F) , (6.13)

where the two added terms on the left-hand side of (6.13) are reverse-engineered so that,
under superposed rigid-body motions, they cancel out the two stress terms on the left-hand
side of (6.12). Indeed, in this case and with the aid of (3.202) and (4.204), invariance under
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superposed rigid-body motions implies that

ΩT+ +Q ˆ̇T(F)QT−T+Ω+T+W+ −W+T+

= Q ˆ̇T(F)QT +T+(W+ −Ω)− (W+ −Ω)T+

= Q ˆ̇T(F)QT + (QTQT )(QWQT )− (QWQT )(QTQT )

= Q(Ṫ+TW −WT)QT = ˆ̇T(QF) , (6.14)

hence, with reference to (6.13)

Q ˆ̇T(F)QT = ˆ̇T(QF) . (6.15)

This equation places a meaningful restriction on the response function ˆ̇T, akin to the one
place on T̂ in (6.7).

The stress-rate quantity
◦
T = Ṫ+TW −WT (6.16)

is called the Jaumann rate of the Cauchy stress tensor and is one of many possible objective
rates of the Cauchy stress that may be used to circumvent the problem posed by invariance
in constitutive equations of the type (6.2). Some other such objective rates are introduced in
Exercise 4-23.

Invariance under superposed rigid-body motions may be also used to outright exclude

certain functional dependencies in the constitutive laws for stress.

Example 6.1.6: Two constitutive reductions due to invariance under super-
posed rigid-body motions

(a) Consider a constitutive law for stress in the form

T = T̂(x) , (6.17)

namely assume that the Cauchy stress tensor depends explicitly on the current position x,
rather than implicitly through the dependence of ρ on it. Invariance of T̂ under superposed
rigid-body motions implies that

T+ = T̂(x+) . (6.18)

Hence, upon recalling (3.176) and (6.17), equation (6.18) leads to

QT̂(x)QT = T̂(Qx+ c) , (6.19)

for all proper orthogonal tensors Q(t) and vectors c(t). Now, choose a constant superposed
rigid-body translation, which amounts to setting Q = I and c = c0, where c0 is constant. It
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follows from (6.19) that
T̂(x) = T̂(x+ c0) . (6.20)

However, given that c0 is arbitrary, the condition (6.20) can be met only if T̂ is altogether
explicitly independent of x.

(b) Assume here a constitutive law of the form

T = T̂(v) , (6.21)

that is, let the stress is an explicit function of the velocity. This violates invariance under
superposed rigid-body motions. Indeed, in this case, invariance implies that

T+ = T̂(v+) , (6.22)

which readily translates, with the aid of (3.180)1, (4.204), and (6.21) to

QT̂(v)QT = T̂(ΩQx+Qv + ċ) . (6.23)

Now, choose a rigid-body translation at constant velocity, such that Q(t) = I, Ω(t) = 0

and c(t) = c0t, where c0 is, again, a constant. It follows that for this particular choice of a
superposed rigid-body motion, equation (6.23) reduces to

T̂(v) = T̂(v + c0) , (6.24)

which implies that the velocity v cannot be an explicit argument in T̂.

6.2 Inviscid fluid

An inviscid fluid is defined by the property that the stress vector t acting on any surface

is always opposite to the outward normal n to the surface, regardless of whether the fluid

is stationary or flowing. Said differently, an inviscid fluid cannot sustain shearing tractions

under any circumstances. This means that

t(n) = Tn = −pn , (6.25)

hence

T = −pi , (6.26)

see Figure 6.1.

On physical grounds, one may assume that the pressure p depends on the density ρ, that

is,

T = −p(ρ)i . (6.27)
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n
t(n)

Figure 6.1. Traction acting on a surface of an inviscid fluid.

This constitutive relation defines a special class of inviscid fluids referred to as elastic fluids.

It is instructive here to take an alternative path for the derivation of (6.27). In particular,

suppose that one starts from the more general constitutive assumption

T = T̂(ρ) . (6.28)

Upon invoking invariance under superposed rigid-body motions, it follows that

T+ = T̂(ρ+) , (6.29)

which, with the aid of (4.204) and (4.215) leads to

QT̂(ρ)QT = T̂(ρ) , (6.30)

for all proper orthogonal Q. Furthermore, substituting −Q for Q in (6.30), it is clear

that (6.30) holds for all improper orthogonal tensors Q as well, hence it holds for all orthog-

onal tensors.

A tensor function T̂(φ) of a real variable is termed isotropic when

QT̂(φ)QT = T̂(φ) , (6.31)

for all orthogonal Q. This condition may be interpreted as meaning that the components of

the tensor function remain unaltered when resolved on any two orthonormal bases. Clearly,

the constitutive function T̂ in (6.28) is isotropic.

The representation theorem for isotropic tensor functions of a real variable states that

a tensor function of a real variable is isotropic if, and only if, it is a real-valued multiple of

the identity tensor. In the case of T̂ in (6.28), this immediately leads to the constitutive

equation (6.27).

To prove the preceding representation theorem, first note that the sufficiency argument

is trivial. The necessity argument can be made by setting

Q = Q1 = e1 ⊗ e1 − e2 ⊗ e3 + e3 ⊗ e2 , (6.32)
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which, recalling the Rodrigues formula (3.113), corresponds to p = e1, q = e2, r = e3, and

θ = π/2, that is, to a rigid rotation of π/2 with respect to the axis of e1. It is easy to verify

that, in this case, equation (6.31) yields






T11 −T13 T12

−T31 T33 −T32

T21 −T23 T22




 =






T11 T12 T13

T21 T22 T23

T31 T32 T33




 . (6.33)

This, in turn, means that

T22 = T33 , T12 = T21 = T13 = T31 = 0 , T23 = −T32 . (6.34)

Next, set

Q = Q2 = e2 ⊗ e2 − e3 ⊗ e1 + e1 ⊗ e3 , (6.35)

which corresponds to p = e2, q = e3, r = e1, and θ = π/2. This is a rigid rotation of π/2

with respect to the axis of e2. Again, upon using this rotation in (6.31), it follows that






T33 T32 −T31

T23 T22 −T21

−T13 −T12 T11




 =






T11 T12 T13

T21 T22 T23

T31 T32 T33




 , (6.36)

which leads to

T11 = T33 , T23 = T32 = T21 = T12 = 0 , T31 = −T13 . (6.37)

One may combine the results in (6.34) and (6.37) to deduce that

T = T I , (6.38)

where T = T11 = T22 = T33, which completes the proof.

Returning to the balance laws for the elastic fluid, note that angular momentum balance

is satisfied automatically by the constitutive equation (6.26) and the non-trivial equations

that govern its motion are written in Eulerian form (which is suitable for fluids) as

ρ̇+ ρ div v = 0

− grad p(ρ) + ρb = ρa
(6.39)
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or, upon expressing the acceleration a in terms of the velocity v and the spatial velocity

gradient L,

ρ̇+ ρ divv = 0

− grad p(ρ) + ρb = ρ

(
∂v

∂t
+ Lv

)

.
(6.40)

Equations (6.40)2 are referred to as the compressible Euler equations. Equations (6.40) form

a set of four coupled non-linear partial differential equations in x and t, which, subject to

the specification of suitable initial and boundary conditions and a pressure law p = p(ρ),

can be solved for ρ(x, t) and ṽ(x, t).

Recall the definition of an isochoric (or volume-preserving) motion in Section 3.2, and note

that, for such a motion, the local mass conservation equation (4.39) leads to ρ0(X) = ρ(x, t)

for all time. Then, upon appealing to the local mass conservation equation (4.33), it is

seen that div v = 0 for all isochoric motions. A material is called incompressible if it can

only undergo isochoric motions. If the inviscid fluid is assumed incompressible, then the

constitutive equation (6.27) loses its meaning, because the function p(ρ) does not make

sense as the density ρ is not a variable quantity. Instead, the constitutive equation T = −pi

holds with p being the unknown. In summary, the governing equations for an incompressible

inviscid fluid (often also referred to as an incompressible ideal fluid) are

divv = 0

− grad p+ ρ0b = ρ0

(
∂v

∂t
+ Lv

)

,
(6.41)

where now the unknowns are p and v. Here, one may interpret the pressure p as the stress

term responsible for imposing the incompressibility condition.

Notice that if a set (p,v) satisfies equations (6.41), then so does another set of the form

(p+ c,v), where c is any constant. This suggests that the pressure field in an incompressible

elastic fluid is not uniquely determined by the equations of motion. The indeterminacy is

removed by specifying the value of the pressure on some part of the boundary of the domain.

This point is illustrated by way of an example: consider a ball composed of an ideal fluid,

which is in equilibrium under uniform time-independent pressure p. The same “motion” of

the ball can be also sustained by any pressure field p+c, where c is a constant, see Figure 6.2.

Recalling (4.141) and given (6.26), the stress power for a region P occupied by an ideal
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p

Figure 6.2. A ball of incompressible ideal fluid in equilibrium under uniform pressure.

fluid is

S(P) =

∫

P
T ·D dv =

∫

P
−pi ·D dv =

∫

P
−p div v dv , (6.42)

or, upon exploiting the result of Exercise 3-29(c),

S(P) =

∫

P
−p

J̇

J
dv =

∫

P
−p ˙ln J dv . (6.43)

This reveals that the pressure p is work-conjugate to the logarithm of the Jacobian J . Also,

equation (6.42) demonstrates that the stress power vanishes when the inviscid fluid is in-

compressible.

6.2.1 Initial/boundary-value problems of inviscid flow

6.2.1.1 Uniform inviscid flow

Consider the case of a uniform flow of an inviscid flow, where ṽ = v0, where v0 is a constant.

Clearly, the flow is isochoric, hence (6.41)1 is satisfied as the outset. Also, since a = 0, it

follows from (6.41)2 that

− grad p+ ρ0b = 0 .

In the absence of body force, the preceding equation implies that the pressure p is homoge-

neous and constant throughout the flow.

6.2.1.2 Irrotational flow

Consider an ideal fluid in the absence of body forces. Assumind that the density ρ0 is

homogeneous, the linear momentum equation (6.41)2 may be written as

− grad

(
p

ρ0

)

=
∂v

∂t
+ Lv . (6.44)
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However, it is easy to show that

Lv = grad

(
1

2
v · v

)

+ 2Wv

= grad

(
1

2
v · v

)

− 2v×w

= grad

(
1

2
v · v

)

− v× curlv , (6.45)

where use is made of (3.144), (2.34) and (3.157). In view of the preceding equation, the

linear momentum equation (6.44) may be also expressed as

∂v

∂t
= − grad

(
p

ρ0
+

1

2
v · v

)

+ v × curlv . (6.46)

Taking the curl of both sides of (6.46), invoking incompressibility in the form of (6.41)1, and

recalling the identities (d)-(f) in Exercise 2-21, it follows that

curl
∂v

∂t
= − curl grad

(
p

ρ0
+

1

2
v · v

)

+ curl (v × curl v)

= curl (v × curlv)

= div (v ⊗ curlv − curl v⊗ v)

= gradv curlv + div(curlv)v − grad(curlv)v − div v curlv

= gradv curlv − grad(curl v)v . (6.47)

The latter readily implies that

d(curlv)

dt
=

∂(curl v)

∂t
+ grad(curlv)v = gradv curlv . (6.48)

If an inviscid flow is irrotational at any given time, then (6.48) implies that
d(curlv)

dt
= 0

at that time, which shows that the flow remains irrotational for all subsequent times.

6.3 Viscous fluid

All actual fluids exhibit some viscosity, that is, some capacity to resist shearing. It is easy to

conclude on physical grounds that the resistance to shearing must be related to the spatial

change in the velocity, as seen in Figure 6.3. Here, the horizontal component of the velocity

vanishes at the solid-fluid interface, corresponding to the no-slip condition, while the same
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shearing

Figure 6.3. Shearing of a viscous fluid

velocity attains increasing values as one moves further away from the interface. Therefore,

it is sensible to postulate a general constitute law for viscous (or viscid) fluids in the form

T = T̂(ρ,L) (6.49)

or, recalling the unique additive decomposition of L in (3.142), more generally as

T = T̂(ρ,D,W) . (6.50)

It turns out that the explicit dependence of the Cauchy stress on W can be suppressed

by invoking invariance under superposed rigid-body motions. Indeed, this requirement leads

to the condition

T+ = T̂(ρ+,D+,W+) . (6.51)

Recalling (3.201), (3.202) and (4.215), equation (6.51) takes the form

QT̂(ρ,D,W)QT = T̂(ρ,QDQT ,QWQT +Ω) , (6.52)

for all proper orthogonal tensors Q. Now, consider a special superposed rigid-body motion

for which Q(t) = I, Q̇(t) = Ω0, c(t) = 0, and ċ(t) = 0. This is a superposed rigid-body

rotation on the original current configuration with constant angular velocity defined by the

skew-symmetric tensor Ω0 (or, equivalently, its axial vector ω0). Given the special form of

this superposed rigid-body motion, equation (6.52) implies that

T̂(ρ,D,W) = T̂(ρ,D,W +Ω0) , (6.53)

which must hold for any constant skew-symmetric tensor Ω0. This implies that the consti-

tutive function T̂ cannot depend on W, thus it reduces to

T = T̂(ρ,D) . (6.54)
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Invariance under superposed rigid-body motions for the reduced constitutive function

in (6.54) gives rise to the condition

T+ = T̂(ρ+,D+) , (6.55)

which, upon appealing to (3.201) and (4.215), necessitates that

QT̂(ρ,D)QT = T̂(ρ,QDQT ) , (6.56)

for all proper orthogonal tensors Q. In fact, since both sides of (6.56) are even functions

of Q, it is clear that (6.56) must hold for all orthogonal tensors Q.

Suppressing, for a moment, the dependence of T̂ on ρ in equation (6.56), note that a

tensor function T̂ of a tensor variable S is called isotropic if

QT̂(S)QT = T̂(QSQT ) , (6.57)

for all orthogonal tensors Q. It can be proved following the process used earlier for isotropic

tensor functions of a real variable that a tensor function T̂ of a tensor variable S is isotropic

in the sense of (6.57) if, and only if, it can be written in the form

T̂(S) = a0I+ a1S+ a2S
2 , (6.58)

where a0, a1, and a2 are real-valued functions of the three principal invariants IS, IIS and

IIIS of the tensor S, that is,

a0 = â0(IS, IIS, IIIS) , a1 = â1(IS, IIS, IIIS) , a2 = â2(IS, IIS, IIIS) . (6.59)

The above result is known as the representation theorem for isotropic tensor-valued functions

of a tensor variable. Using this theorem, it is readily concluded that the Cauchy stress for

a viscous fluid that obeys the constitutive law (6.54) is of the form

T̂(ρ,D) = a0i+ a1D+ a2D
2 , (6.60)

where a0, a1 and a2 are functions of ID, IID, IIID and ρ. The preceding equation characterizes

what is known as the Reiner1-Rivlin fluid. Materials that obey (6.60) are also generally

referred to as non-Newtonian fluids.

1Markus Reiner (1886–1976) was an Austrian-born Israeli engineer.
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At this stage, introduce a physically plausible assumption by way of which the Cauchy

stress T reduces to hydrostatic pressure −p(ρ)i when D = 0. Then, one may slightly rewrite

the constitutive function (6.60) as

T̂(ρ,D) =
(
−p(ρ) + a∗0

)
i+ a1D+ a2D

2 , (6.61)

where, in general, a∗0 = â∗0(ρ, ID, IID, IIID). Clearly, when a∗0 = a1 = a2 = 0, the viscous fluid

degenerates to an inviscid one.

From the above general class of viscous fluids, consider the sub-class of those for which the

Cauchy stress is linear in D. To preserve linearity in D, the constitutive function in (6.61)

is reduced to

T̂(ρ,D) =
(
−p(ρ) + a∗0

)
i+ a1D . (6.62)

where a∗0 = λID, a1 = 2µ, and λ, µ are material parameters that depend, in general, only

on ρ. This means that the Cauchy stress tensor now takes the simplified form

T̂(ρ,D) = −p(ρ)i + λ(ρ)(trD)i+ 2µ(ρ)D . (6.63)

Viscous fluids which obey the constitutive (6.63) are referred to as Newtonian viscous fluids

or linear viscous fluids. The functions λ and µ are called the viscosity coefficients and have

dimension of stress times time (or [ML−1
T
−1]).

With the constitutive equation (6.63) in place, consider the balance laws for the New-

tonian viscous fluid. Clearly, angular momentum balance is satisfied at the outset, since T

in (6.63) is already symmetric. Recalling (4.33) and (4.81), the balances of mass and linear

momentum can be expressed as

ρ̇+ ρ div v = 0

div
[
−p(ρ)i + λ(ρ)(trD)i+ 2µ(ρ)D

]
+ ρb = ρa .

(6.64)

Assuming that λ and µ are independent of ρ (which is common), the left-hand side of (6.64)2

takes the form

div
[
−p(ρ)i + λ(trD)i + 2µD

]
= − grad p(ρ) + λ grad div v + µ(div gradv + grad divv)

= − grad p(ρ) + (λ+ µ) grad div v + µ div gradv . (6.65)

Therefore, for this special case, equations (6.64) may be expressed as

ρ̇+ ρ div v = 0

− grad p(ρ) + (λ+ µ) grad div v + µ div gradv + ρb = ρa .
(6.66)

Equations (6.66)2 are known as the Navier2-Stokes equations for the compressible Newtonian

2Claude-Louis Navier (1785–1836) was a French engineer.
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viscous fluid. As in the case of the compressible inviscid fluid, there are four coupled non-

linear partial differential equations in (6.66) and four unknowns, that is, the mass density ρ

and the velocity v.

If the Newtonian viscous fluid is assumed incompressible (which implies that divv = 0),

the Cauchy stress is given by

T̂(p,D) = −pi + 2µD , (6.67)

where the pressure p is now a Lagrange multiplier that enforces the incompressibility con-

straint, in complete analogy to the inviscid case. Hence, the governing equations (6.66)

become

divv = 0

− grad p+ µ div gradv + ρb = ρa .
(6.68)

The first equation in (6.68) is a local statement of the constraint of incompressibility, while

the second is the reduced statement of linear momentum balance that reflects incompress-

ibility. Also, upon recalling the mass balance equation (4.33), incompressibility implies that

the material time derivative of the density ρ vanishes identically. As in the inviscid case, the

four unknowns now are the pressure p and the velocity v.

The Navier-Stokes equations (compressible or incompressible) are non-linear in v due to

the acceleration term, which may be expanded in the form a =
∂ṽ

∂t
+

∂ṽ

∂x
v. In the special

case of very slow and nearly steady flow, referred to as creeping flow or Stokes flow, the

acceleration term may be ignored, giving rise to a system of four time-independent linear

partial differential equations.

6.3.1 The Helmholtz-Hodge decomposition and projection meth-

ods in computational fluid mechanics

Any vector field ṽ(x, t) defined in a domain R at any time t can be uniquely decomposed as

ṽ = vso + vir , (6.69)

where

div vso = 0 in R (6.70)

and

vso · n = 0 on ∂R , (6.71)
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while

curlvir = 0 . (6.72)

Equation (6.69) describes the Helmholtz3-Hodge4 decomposition of a vector field ṽ into a

solenoidal part vso and an irrotational part vir. As (6.70) and (6.71) suggest, the former is

defined as a divergence-free vector field whose normal component vanishes along the bound-

ary ∂R of the domain. In addition, it can be shown that, given any irrotational vector

field vir in a simply connected5 region R, there exists a real-valued function φ in the same

domain, such that

vir = gradφ , (6.73)

for some real-valued function φ(x, t) in R at t.

To argue the uniqueness of this decomposition, first note that
∫

R
vso · vir dv =

∫

R
vso · gradφ dv

=

∫

R
div(φvso) dv −

∫

R
φ div vso dv

=

∫

∂R
φvso · n da = 0 , (6.74)

where use is made of the product rule, the divergence theorem (4.3) and the properties (6.70)

and (6.71) of vso. Therefore, the vector fields vso and vir are orthogonal in the sense of (6.74).

Subsequently, suppose, by contradiction, that there exist distinct solenoidal vector fields v
(1)
so ,

v
(2)
so and irrotational vector fields v

(1)
ir , v

(2)
ir , such that

v = v(1)
so + v

(1)
ir

= v(2)
so + v

(2)
ir .

(6.75)

Next, write the difference between the two decompositions as

(v(1)
so − v(2)

so ) + (v
(1)
ir − v

(2)
ir ) = 0 , (6.76)

and consider the product
∫

R
(v(1)

so − v(2)
so ) ·

[
(v(1)

so − v(2)
so ) + (v

(1)
ir − v

(2)
ir )
]
dv

=

∫

R
(v(1)

so − v(2)
so ) · (v(1)

so − v(2)
so ) dv +

∫

R
(v(1)

so − v(2)
so ) · (v(1)

ir − v
(2)
ir ) dv = 0 . (6.77)

3Herman von Helmholtz (1821–1894) was a German physicist and physician.
4William V.D. Hodge (1903–1975) was a Scottish mathematician.
5A region R in E3 is simply connected if any closed curve in R may be continuously shrunk to a point

without ever exiting R.
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Exploiting the orthogonality condition (6.74), the preceding equation becomes

∫

R
(v(1)

so − v(2)
so ) · (v(1)

so − v(2)
so ) dv = 0 , (6.78)

which implies that v
(1)
so = v

(2)
so , hence also v

(1)
ir = v

(2)
ir , therefore the decomposition (6.69) is

unique.

To argue the existence of the decomposition, note that, given any vector field ṽ in the

domain R at time t, which satisfies (6.69), one may write

div ṽ = div vso + div gradφ = div gradφ (6.79)

subject to

ṽ · n = (vso + vir) · n = vir · n = gradφ · n (6.80)

on the boundary ∂R, where the defining properties of vso and vir are invoked. Equa-

tions (6.79) and (6.80) imply that, given ṽ, determining the real-valued function φ is tanta-

mount to solving the boundary-value problem

div gradφ = div ṽ in R ,

gradφ · n = ṽ · n on ∂R .
(6.81)

This is the classical Laplacian with prescribed flux boundary conditions, which can be readily

shown to possess a solution φ which is unique to within an additive constant. This non-

uniqueness is of no consequence to the Helmholtz-Hodge decomposition, since φ enters the

definition of vir through its gradient. Once vir is shown to exist, a solenoidal vector field vso

is defined as vso = ṽ − gradφ.

The Helmholtz-Hodge decomposition plays a pivotal role in a powerful class of numerical

methods used to solve the incompressible Navier-Stokes equations. To illustrate the use of

these so-called projection methods in the simplest possible setting, suppose that a solution

to the incompressible Navier-Stokes equations (6.68) is sought in a domain R subject to the

boundary condition v · n = 0 on ∂R. The projection methods first obtain a prediction v∗

to the velocity field, such that

µ div gradv∗ + ρ0b = ρ0a
∗ (6.82)

in R and v∗ · n = 0 on ∂R. Also, let the density be spatially homogeneous and equal to ρ0.

Clearly, v∗ does not involve the pressure field p appearing in (6.68)2 nor does it satisfy,
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in general, the incompressibility condition of (6.68)1. For this reason, a correction to the

velocity is subsequently introduced, such that

− grad p = ρ0(a− a∗) . (6.83)

Ignoring the effect of the correction on the rate-of-deformation tensor, the preceding equation

may be rewritten as

a∗ = a+ grad
p

ρ0
. (6.84)

Integrating (6.84) in time over a small increment ∆t and assuming, for simplicity, zero initial

velocity, one may write, to within a small error,

v∗ = v + grad
p∆t

ρ0
. (6.85)

Equation (6.85) represents the Helmholtz-Hodge decomposition of the field v∗ into the actual

velocity field v (which is solenoidal) and the pressure gradient grad p (weighted by
∆t

ρ0
).

Therefore, the exact velocity v (to within numerical error) is obtained by projecting v∗ to

its solenoidal part, which justifies the name of the method.

6.3.2 Initial/boundary-value problems of viscous flow

6.3.2.1 Gravity-driven flow down an inclined plane

Consider an incompressible Newtonian viscous fluid in steady flow down an inclined plane

due to the influence of gravity, see Figure 6.4. Let the pressure of the free surface be constant

and equal to p0 and assume that the fluid region has constant depth h.

g
h

θe1

e2

e3

Figure 6.4. Flow down an inclined plane

Assume at the outset that the velocity and pressure fields are of the form

v = ṽ(x2, x3)e2 (6.86)
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and

p = p̃(x1, x2, x3) , (6.87)

respectively. Incompressibility implies that

div v =
∂ṽ

∂x2

= 0 , (6.88)

which means that the velocity field is independent of x2, namely that

v = v̄(x3)e2 . (6.89)

This, in turn implies that the acceleration vanishes identically.

Given the reduced velocity field in (6.89), the velocity gradient tensor is written in com-

ponent form as

[Lij ] =






0 0 0

0 0 dv̄
dx3

0 0 0




 , (6.90)

which implies that the rate-of-deformation tensor has components

[Dij] =






0 0 0

0 0 1
2

dv̄
dx3

0 1
2

dv̄
dx3

0




 . (6.91)

Recalling the constitutive equation (6.67), it follows from (6.91) that the Cauchy stress is

given by

[Tij ] =






−p 0 0

0 −p µ dv̄
dx3

0 µ dv̄
dx3

−p




 . (6.92)

Note that gravity induces body force per unit mass equal to

b = g(sin θe2 − cos θe3) , (6.93)

where g is the gravitational constant. Given (6.87), (6.89), (6.92) and (6.93), the equations

of linear momentum balance assume the form

− ∂p̃

∂x1
= 0 ,

− ∂p̃

∂x2
+ µ

d2v̄

dx2
3

+ ρg sin θ = 0 , (6.94)

− ∂p̃

∂x3

− ρg cos θ = 0 .
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It follows from (6.94)1,3 that

p = p̄(x2, x3) = −ρgx3 cos θ + f(x2) , (6.95)

where f(x2) is a function to be determined.

Next, taking advantage of (6.95) to impose the pressure boundary condition on the free

surface, one finds that

p̄(x2, h) = −ρgh cos θ + f(x2) = p0 , (6.96)

which implies that the function f(x2) is constant and equal to

f(x2) = p0 + ρgh cos θ . (6.97)

Substituting this equation to (6.95) results in an expression for the pressure as

p = p0 + ρg(h− x3) cos θ . (6.98)

Using the pressure from (6.98) in the remaining momentum balance equation (6.94)2 and

recalling (6.89) leads to

µ
d2v̄

dx2
3

+ ρg sin θ = 0 , (6.99)

which may be integrated twice to

v̄(x3) =
−ρg sin θ

2µ
x2
3 + c1x3 + c2 . (6.100)

Enforcing the boundary conditions v̄(0) = 0 (no-slip condition on the solid-fluid interface)

and T23(h) = 0 (no shearing traction on the free surface), gives c2 = 0 and c1 =
ρgh sin θ

µ
,

which, when substituted into (6.100) yield

v̄(x3) =
ρg sin θ

µ
x3

(

h− x3

2

)

. (6.101)

It is seen from (6.101) that the velocity distribution is parabolic along x3 and attains

maximum value vmax =
ρg sin θ

2µ
h2 on the free surface. As expected on physical grounds, the

velocity is proportional to the gravity force and inversely proportional to the viscosity.
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6.3.2.2 Couette flow

Couette6 flow is the steady flow between two concentric rigid cylinders of radii Ro (outer

cylinder) and Ri (inner cylinder) rotating with constant angular velocities ωo (outer cylinder)

and ωi (inner cylinder), see Figure 6.5. The fluid is assumed Newtonian and incompressible.

Also, the effect of body force is neglected.

r

Ro

Ri

ωoωi
er

eθ

Figure 6.5. Couette flow

The problem lends itself naturally to analysis using cylindrical polar coordinates with

basis vectors {er, eθ, ez}. The velocity and pressure fields are assumed axisymmetric and,

using the cylindrical polar coordinate representation, can be expressed as

v = v̄(r)eθ (6.102)

and

p = p̄(r) . (6.103)

Taking into account (A.16), the spatial velocity gradient can be written as

L =
dv̄

dr
eθ ⊗ er −

v̄

r
er ⊗ eθ , (6.104)

so that

D =
r

2

d

dr

( v̄

r

)

(er ⊗ eθ + eθ ⊗ er) . (6.105)

It is clear from (6.105) that div v = 0, hence the incompressibility condition is satisfied from

the outset. Also, in light of (6.102) and (6.104), the acceleration of the fluid is expressed as

a =

(
dv̄

dr
eθ ⊗ er − v̄

1

r
er ⊗ eθ

)

v̄eθ = − v̄2

r
er . (6.106)

6Maurice Marie Alfred Couette (1858–1943) was a French physicist.
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The stress may be computed with the aid of (6.105) and equals

T = −pi+ µr
d

dr

( v̄

r

)

(er ⊗ eθ + eθ ⊗ er) . (6.107)

Taking into account (6.107), (6.106), and (A.19), the linear momentum balance equations in

the r- and θ-directions become

−dp

dr
= − ρ

v̄2

r
,

d

dr

[

r
d

dr

( v̄

r

)]

+ 2
d

dr

( v̄

r

)

= 0 ,
(6.108)

respectively.

The second of the above equations may be integrated twice to give

v̄(r) = c1r +
c2
r

. (6.109)

The integration constants c1 and c2 can be determined by imposing the no-slip boundary

conditions v̄(Ri) = ωiRi and v̄(Ro) = ωoRo. Upon determining these constants, the velocity

of the flow takes the form

v̄(r) = ωoRo

Ro

Ri

(
r

Ri
− Ri

r

)

+
ωi

ωo

(
Ro

r
− r

Ro

)

(
Ro

Ri

)2

− 1

. (6.110)

Finally, integrating equation (6.108)1 and using a pressure boundary condition such as, e.g.,

p̄(R0) = p0, leads to an expression for the pressure p̄(r).

It is clear from (6.110) that in the special case of two cylinders spinning with the same

angular velocity ω, the velocity of the fluid reduces to v̄(r) = ωr. Alternatively, when the

inner cylinder collapses to a point, the velocity becomes simply v̄(r) = ω0r.

6.3.2.3 Poiseuille flow

Poiseuille7 flow is the steady flow of an incompressible Newtonian viscous fluid through a

straight cylindrical pipe of constant radius R in the absence of gravity. Adopting, again, a

cylindrical polar coordinate system, and aligning the ez-axis to the centerline of the pipe,

assume that the velocity of the fluid is of the general form

v = v̄(r)ez , (6.111)

7Jean Louis Marie Poiseuille (1797–1869) was a French physicist.
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while the pressure is

p = p̄(r, z) . (6.112)

Taking again into account (A.16), the velocity gradient for this flow is given by

L =
dv̄

dr
ez ⊗ er , (6.113)

hence the rate-of-deformation tensor is expressed as

D =
1

2

dv̄

dr
(er ⊗ ez + ez ⊗ er) . (6.114)

Equation (6.114) shows that the assumed velocity field satisfies the incompressibility condi-

tion at the outset, while (6.111) and (6.113) imply that the acceleration vanishes identically.

Given (6.114), one concludes that the Cauchy stress of the incompressible fluid is

T = −pi+ µ
dv̄

dr
(er ⊗ ez + ez ⊗ er) . (6.115)

Then, the equations of linear momentum balance take the form

−∂p̄

∂r
= 0 ,

−1

r

∂p̄

∂θ
= 0 , (6.116)

−∂p̄

∂z
+ µ

d2v̄

dr2
+

µ

r

dv̄

dr
= 0 ,

where (A.19) is employed. Equation (6.116)2 is satisfied identically due to assumption (6.112),

while equation (6.116)1 implies that p = p̂(z). However, given that v̄ depends only on r,

equation (6.116)3 requires that
dp̂

dz
= c , (6.117)

where c is a constant. Upon integrating (6.116)3 in r, one finds that

v̄(r) =
cr2

4µ
+ c1 ln r + c2 , (6.118)

where c1 and c2 are also constants. Admitting that the solution should remain finite at r = 0

and imposing the no-slip condition v̄(R) = 0, it follows that

v̄(r) =
c

4µ
(r2 −R2) , (6.119)

which establishes a quadratic profile for the velocity along the radius of the pipe.

ME185



194 Constitutive theories

Two additional boundary conditions are necessary (either a velocity boundary condition

on one end and a pressure boundary condition on the other or pressure boundary condi-

tions on both ends of the pipe) in order to fully determine the velocity and pressure field.

If, in particular, it is assumed that v̄(0) = v0 at some cross-section, then it is concluded

from (6.119) that c = −4µv0
R2 , hence the velocity becomes

v̄(r) =

[

1−
( r

R

)2
]

v0 . (6.120)

Given the expression for c, one may establish, with the aid of (6.117), a relation between the

viscosity µ and the pressure change ∆p along a region of the pipe with length ∆L according

to

∆p = −4µv0
R2

∆L . (6.121)

This relation may be used to estimate experimentally the viscosity coefficient µ.

6.3.2.4 Stokes’ Second Problem

Consider the semi-infinite domain R = {(x1, x2, x3) | x3 > 0}, which contains a compressible

Newtonian viscous fluid, see Figure 6.6. The fluid is subjected to a periodic motion of its

boundary x3 = 0 in the form

vp(t) = U cosωte1 , (6.122)

where U > 0 is the magnitude and ω > 0 the frequency. In addition, the body force is

neglected and the initial density is assumed homogeneous.

vp

e1
e2e3

Figure 6.6. Semi-infinite domain for Stokes’ Second Problem

Adopting a semi-inverse approach, assume a general form of the solution as

v = ṽ(x3, t) = f(x3) cos (ωt− αx3)e1 , (6.123)

where the function f and the constant α are to be determined. The solution (6.123) as-

sumes that the velocity field varies along x3 and is also periodic, albeit phase-shifted by
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αx3 relative to the prescribed boundary velocity. Further, note that the assumed motion

is isochoric, hence, owing to conservation of mass, the initially homogeneous mass density

remains homogeneous throught the motion. In view of (6.123), the acceleration field is given

by

a = ã(x3, t) = −ωf(x3) sin (ωt− αx3)e1 , (6.124)

with its convective part being identically zero.

The only non-vanishing components of the rate-of-deformation tensor are

D13 = D31 =
1

2

[
df

dx3
cos (ωt− αx3) + αf sin (ωt− αx3)

]

. (6.125)

Recalling (6.63), with trD = divv = 0, and noting that p and µ are necessarily constant,

since the mass density is homogeneous, it follows that

[Tij ] =






−p 0 T13

0 −p 0

T31 0 −p




 , (6.126)

where

T13 = T31 = µ

[
df

dx3
cos (ωt− αx3) + αf sin (ωt− αx3)

]

. (6.127)

Taking into account (6.124) and (6.126) it is easy to see that the linear momentum

balance equations in the e2- and e3-directions hold identically. In the e1-direction, the linear

momentum balance equation takes the form

µ

[
d2f

dx2
3

cos (ωt− αx3) + 2α
df

dx3

sin (ωt− αx3)− α2f cos (ωt− αx3)

]

= −ρωf sin (ωt− αx3) . (6.128)

The preceding equation can be also written as

µ

[
d2f

dx2
3

− α2f

]

cos (ωt− αx3) +

[

2µα
df

dx3
+ ρωf

]

sin (ωt− αx3) = 0 . (6.129)

For this equation to be satisfied identically for all x3 and t, it is necessary and sufficient that

d2f

dx2
3

− α2f = 0 (6.130)

and

2µα
df

dx3
+ ρωf = 0 . (6.131)
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These two equations can be directly integrated to give

f(x3) = c1e
αx3 + c2e

−αx3 (6.132)

and

f(x3) = c3e
− ρω

2µα
x3 , (6.133)

respectively. To reconcile the two solutions, one needs to take c1 = 0, c2 = c3 = c, therefore

f(x3) = ce−
ρω
2µα

x3 , (6.134)

where α =

√
ρω

2µ
. With this expression in place, the velocity field of equation (6.123) takes

the form

ṽ(x3, t) = ce−
ρω
2µα

x3 cos (ωt− αx3)e1 . (6.135)

Applying the boundary condition ṽ(0, t) = vp(t) as in (6.122) leads to c = U , so that, finally,

ṽ3(x3, t) = Ue−
√

ρω
2µ

x3 cos

(

ωt−
√

ρω

2µ
x3

)

e1 . (6.136)

It is clear from (6.136) that the boundary velocity decays exponentially along x3 with

rate of decay that is inversely proportional to the square-root of the viscosity of the fluid and

phase shift that is likewise inversely proportional to the square-root of the viscosity. Also note

that the pressure p is constitutively specified, yet is constant throughout the semi-infinite

domain owing to the homogeneity of the mass density.

6.4 Non-linearly elastic solid

Before discussing the constitutive description of non-linearly elastic solids, it is important

to emphasize that the distinction between fluids and solids as continuous media is neither

sharp nor uncontested. It is reasonable to state that fluids generally undergo deformation

that cannot be practically measured relative to a reference configuration, while solids do.

However, even this statement is quite relative. It is entirely possible to envision a body

whose deformation at some timescale fits the preceding attribute of a fluid but in another

(much shorter) can be safely considered as a solid. Tectonic motions of the earth are a good

such example, as they can be thought of as fluid in a geologic time-scale (in the order of

millions of years), but solid in much shorter time scales.
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Recalling the definition of stress power in the mechanical energy balance theorem of

equation (4.140), define the non-linearly elastic solid by admitting the existence of a strain

energy function Ψ = Ψ̂(F) per unit mass, such that

T ·D = ρΨ̇ . (6.137)

It follows, with the aid of (4.33) and the Reynolds transport theorem, that the stress power

in the region P takes the form
∫

P
T ·D dv =

∫

P
ρΨ̇ dv =

d

dt

∫

P
ρΨ dv =

d

dt
W (P) , (6.138)

where W (P) =

∫

P
ρΨ dv is the total strain energy of the material occupying the region P.

As a result, the mechanical energy balance theorem (4.142) for this class of materials takes

the form
d

dt
[K(P) +W (P)] = Rb(P) +Rc(P) = R(P) . (6.139)

In words, equation (6.139) states that the rate of change of the kinetic and strain energy

(which together comprise the total internal energy of the non-linearly elastic material) equals

the rate of work done by the external forces.

Recall next that the strain energy function at a given time depends exclusively on the

deformation gradient. With the aid of the chain rule, this leads to

Ψ̇ =
∂Ψ̂

∂F
· Ḟ , (6.140)

so that, upon recalling (3.146) and (6.137),

T ·D = ρΨ̇ = ρ
∂Ψ̂

∂F
· (LF) . (6.141)

This, in turn, leads to

T · L = ρ
∂Ψ̂

∂F
· (LF) = ρ

∂Ψ̂

∂F
FT · L , (6.142)

where the symmetry of the Cauchy stress is exploited. The preceding equation may be also

written as

(T− ρ
∂Ψ̂

∂F
FT ) · L = 0 . (6.143)

Observing that, given a deformation gradient F, this equation holds for any L, it is imme-

diately concluded that

T = ρ
∂Ψ̂

∂F
FT . (6.144)
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Upon enforcing symmetry of the Cauchy stress, equation (6.144) implies that

∂Ψ̂

∂F
FT = F

(

∂Ψ̂

∂F

)T

. (6.145)

This places a restriction on the form of the strain energy function Ψ̂. Instead of explicitly

enforcing this restriction, one may simply write the Cauchy stress as

T =
1

2
ρ




∂Ψ̂

∂F
FT + F

(

∂Ψ̂

∂F

)T


 . (6.146)

Recalling (4.39) and (4.122), it is readily concluded from (6.144) that the stress response

of a non-linearly elastic material may be equivalently expressed in terms of the first Piola-

Kirchhoff stress tensor as

P = ρ0
∂Ψ̂

∂F
. (6.147)

Alternative expressions for the strain energy of the non-linearly elastic solid may be ob-

tained by invoking invariance under superposed rigid-body motions. Specifically, invariance

of the constitutive function Ψ̂ implies that

Ψ+ = Ψ̂(F+) = Ψ̂(QF)

= Ψ = Ψ̂(F) ,
(6.148)

for all proper orthogonal tensors Q. Selecting Q = RT , where R is the rotation stemming

from the polar decomposition of F8 of (3.65)1, it follows from (6.148) that

Ψ̂(F) = Ψ̂(QF) = Ψ̂(RTRU) = Ψ̂(U) . (6.149)

Therefore, one may write

Ψ = Ψ̂(F) = Ψ̂(U) = Ψ̄(C) = Ψ̌(E) , (6.150)

by merely exploiting the one-to-one relations between tensors U, C and E. Then, the

material time derivative of Ψ can be expressed as

Ψ̇ =
∂Ψ̄

∂C
· Ċ =

∂Ψ̄

∂C
· (2FTDF) , (6.151)

8Since, by its definition, R is a two-point tensor while Q is a spatial tensor, it should be understood here

that Q is equal to RT to within a two-point shifter tensor Z = δiAei ⊗EA, that is, Q = ZRT , although Z

does not appear explicitly in the derivation.
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where (3.147) is invoked. It follows from (6.137) that

T ·D = ρ
∂Ψ̄

∂C
· (2FTDF) = 2ρF

∂Ψ̄

∂C
FT ·D , (6.152)

which readily leads to
(

T− 2ρF
∂Ψ̄

∂C
FT

)

·D = 0 . (6.153)

Given the arbitrariness of D for any given deformation gradient F, it follows that

T = 2ρF
∂Ψ̄

∂C
FT . (6.154)

Using an analogous procedure, one may also derive a constitutive equation for the Cauchy

stress in terms of the strain energy function Ψ̌ as

T = ρF
∂Ψ̌

∂E
FT . (6.155)

It follows from (6.155) with the aid of (4.39) and (4.128) that the stress response of the non-

linearly elastic solid may be expressed in terms of the second Piola-Kirchhoff stress tensor

as

S = ρ0
∂Ψ̌

∂E
= 2ρ0

∂Ψ̄

∂C
. (6.156)

Now, consider a body made of non-linearly elastic material that undergoes a special

motion χ, for which there exist times t1 and t2(> t1), such that

x = χ(X, t1) = χ(X, t2)

v = χ̇(X, t1) = χ̇(X, t2) .
(6.157)

for all X. This motion is referred to as a closed cycle. In addition, recall the theorem of

mechanical energy balance in (6.139) and integrate this equation in time between t1 and t2

to find that

[K(P) +W (P)]t2t1 =

∫ t2

t1

[Rb(P) +Rc(P)] dt . (6.158)

However, since the motion is a closed cycle, it is immediately concluded from (6.157) with

the aid of (4.39) that

[K(P) +W (P)]t2t1 =

[∫

P

1

2
ρv · v dv +

∫

P
ρΨ̂(F) dv

]t2

t1

= 0 , (6.159)

thus, also
∫ t2

t1

[Rb(P) +Rc(P)] dt =

∫ t2

t1

[∫

P
ρb · v dv +

∫

∂P
t · v da

]

dt = 0 . (6.160)
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This proves that the work done on a non-linearly elastic solid by the external forces during

a closed cycle is equal to zero.

Equation (6.139) further implies that

[K(P) +W (P)]tt1 =

∫ t

t1

[∫

P
ρb · v dv +

∫

∂P
t · v da

]

dt . (6.161)

This means that the work done by the external forces taking the body from its configuration

at time t1 to a configuration at time t(> t1) depends only on the end states at t and t1 and

not on the path connecting these two states. This is the sense in which the non-linearly

elastic material is characterized as path-independent.

Non-linearly elastic materials for which there exists a strain energy function Ψ̂ are some-

times referred to as Green-elastic or hyperelastic materials. A more general class of non-

linearly elastic materials is defined by the constitutive relation

T = T̂(F) . (6.162)

Such materials are called Cauchy-elastic and, in general, do not satisfy the condition of

worklessness in a closed cycle. Recalling the constitutive equation (6.146), it is clear that

any Green-elastic material is also Cauchy-elastic. Upon reflecting on the constitutive equa-

tion (6.162), one may conclude that in a Cauchy-elastic material the stress at a given time is

fully determined by the deformation at that time relative to a given reference configuration.

The concept of material symmetry is now introduced for the class of Cauchy-elastic ma-

terials. To this end, let P be a material particle that occupies the point X in the reference

configuration. Also, take an infinitesimal volume element P0 which contains X in the refer-

ence configuration. Since the material is assumed Cauchy-elastic, it follows that the Cauchy

stress tensor for P at time t is given by (6.162). Now, consider another reference configura-

tion locally related to the original one by a transformation characterized by the tensor F′,

see Figure 6.7. This defines the geometric relation between the regions P0 and P ′
0. Note,

however, that the stress at point P and time t is agnostic to (therefore, independent of) the

specific choice of reference configuration. Hence, when expressed in terms of the deforma-

tion relative to the transformed reference configuration, the Cauchy stress at point P is, in

general, given by

T = T̂′(FF′−1) , (6.163)

where the function T̂′ must be different from T̂. The preceding analysis demonstrates that

the constitutive law depends, in general, on the choice of reference configuration. For this

ME185



Non-linearly elastic solid 201

reason, one may choose, at the expense of added notational burden, to formally write (6.162)

and (6.163) as

T = T̂P0
(F) . (6.164)

and

T = T̂P ′

0
(FF′−1) , (6.165)

respectively, thereby defining explicitly the reference configuration relative to which the stress

function is defined.

P

P
P

P0P ′
0

P

F′

F′−1

F

Figure 6.7. Deformation relative to two reference configurations.

By way of background, recall here that a group G is a set together with an operation ∗,
such that the following properties hold for any three elements a, b, c of the set:

(i) a ∗ b belongs to the set (closure),

(ii) (a ∗ b) ∗ c = a ∗ (b ∗ c) (associativity),

(iii) There exists an element i, such that i ∗ a = a ∗ i = a (existence of identity),

(iv) For every a, there exists an element −a, such that a ∗ (−a) = (−a) ∗ a = i (existence

of inverse).

It is easy to confirm that the set of all orthogonal transformations Q of the original

reference configuration forms a group under the usual tensor multiplication, called the or-

thogonal group or O(3). In this group, the identity element is the identity tensor I and the

inverse element is the inverse Q−1 (or transpose QT ) of any given element Q. The subgroup9

GP0
⊆ O(3) is called a symmetry group for the Cauchy-elastic material with respect to the

reference configuration P0 if

T̂P0
(F) = T̂P0

(FQ) , (6.166)

9A subset of the group set together with the group operation is called a subgroup if it satisfies the closure

property within the subset.
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for all Q ∈ GP0
. Physically, equation (6.166) identifies orthogonal transformations Q which

produce the same stress at P under two different loading cases. The first one subjects

the reference configuration to any deformation gradient F. The second one subjects the

reference configuration to an orthogonal transformation Q and then to the same deformation

gradient F, see Figure 6.8. If the stress in both loading cases is the same, then the orthogonal

transformationQ is representative of the material symmetry of the body in the neighborhood

of P relative to the reference configuration P0.

P
P

P0

Q

Figure 6.8. An orthogonal transformation of the reference configuration.

Next, consider again the two reference configurations P0 and P ′
0 of Figure 6.7, and suppose

they are associated with material symmetry groups GP0
and GP ′

0
, respectively. It follows

from (6.166) that

Q1 ∈ GP0
⇐⇒ T̂P0

(F) = T̂P0
(FQ1) ,

Q2 ∈ GP ′

0
⇐⇒ T̂P ′

0
(F) = T̂P ′

0
(FQ2) .

(6.167)

Recalling (6.164) and (6.165), one may conclude from (6.167) that

T = T̂P0
(F) = T̂P ′

0
(FF′−1) = T̂P ′

0
(FF′−1Q2)

= T̂P0
(FQ1) = T̂P ′

0
(FQ1F

′−1) .
(6.168)

Keeping Q1 and F′ fixed, and observing that (6.168) holds true for all F, implies that

Q2 = F′Q1F
′−1 (6.169)

or, more generally,

GP ′

0
=
{
F′Q1F

′−1 | Q1 ∈ GP0

}
. (6.170)

The relation (6.170) between the symmetry groups of the material is known as Noll’s10 rule

and it shows that, for Cauchy-elastic materials, the symmetry groups relative to two different

10Walter Noll (1925-) is a German-born American applied mathematician and mechanician.
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reference configurations are related according a tensorial rule involving the transformation

between the two configurations.

If equation (6.166) holds for all Q ∈ O(3), then the Cauchy-elastic material is termed

isotropic relative to the configuration P0. Therefore, an isotropic material is insensitive

to any orthogonal transformation of its reference configuration. Recalling the left polar

decomposition (3.65)2 of the deformation gradient and choosing Q = RT , equation (6.166)

implies that

T = T̂P0
(F) = T̂P0

(FRT ) = T̂P0
(VRRT ) = T̂P0

(V) . (6.171)

In addition, invariance of T̂P0
under superposed rigid-body motions leads to the condition

QT̂P0
(V)QT = T̂P0

(QVQT ) , (6.172)

for all proper orthogonal tensors Q (hence, given that (6.171) is quadratic in Q, all orthog-

onal Q). This means that T̂P0
is an isotropic tensor-valued function of V. Invoking the

representation theorem for isotropic tensor-valued functions of a tensor variable introduced

in Section 6.3, it follows that

T = T̂P0
(V) = a0i+ a1V + a2V

2 , (6.173)

where a0, a1, and a2 are functions of the three principal invariants of V. An alternative

representation of the Cauchy stress of a Cauchy-elastic material is

T = T̄P0
(B) = b0i+ b1B+ b2B

2 , (6.174)

where, now, b0, b1, and b2 are functions of the three principal invariants of B. This result

may be trivially derived by setting T̄P0
(B) = T̂P0

(V) in (6.171) and proceeding with the

enforcement of invariance as discussed immediately above. Given that B and C share the

same invariants, one may exploit (4.128) to transform (6.174) into

S = c0C
−1 + c1I+ c2C , (6.175)

where c0, c1 and c2 are functions of the three principal invariants of C. Alternatively, upon

invoking the Cayley-Hamilton theorem of Example 2.3.5, one may equivalently express the

second Piola-Kirchhoff stress as

S = c′0I+ c′1C+ c′2C
2 , (6.176)
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for a different set of functions c′0, c
′
1 and c′2 of the three principal invariants of C.

For a Green-elastic solid, isotropy implies that

Ψ̂(F) = Ψ̂(FQ) , (6.177)

for all Q in O(3). In view of (6.150)3, the preceding condition gives rise to

Ψ̄(C) = Ψ̄(QTCQ) , (6.178)

again, for all Q in O(3). Applying the representation theorem for isotropic real-valued func-

tions of a tensor variable to the real-valued function Ψ̄ leads to the conclusion that the strain

energy of any isotropic Green-elastic solid may be expressed as

Ψ = Ψ̃(IC, IIC, IIIC) . (6.179)

Recalling (6.156) and using the chain rule it follows that

S = 2ρ0

[

∂Ψ̃

∂IC

∂IC
∂C

+
∂Ψ̃

∂IIC

∂IIC
∂C

+
∂Ψ̃

∂IIIC

∂IIIC
∂C

]

. (6.180)

It is easy to show

∂IC
∂C

= I ,

∂IIC
∂C

= ICI−C ,

∂IIIC
∂C

= IIICC
−1 ,

(6.181)

(see Exercise 3-29 for an component-based approach to derive (6.181)3). Then, the expres-

sion for the second Piola-Kirchhoff stress in (6.180) becomes

S = 2ρ0

[(

∂Ψ̃

∂IC
+ IC

∂Ψ̃

∂IIC

)

I− ∂Ψ̃

∂IIC
C+

∂Ψ̃

∂IIIC
IIICC

−1

]

. (6.182)

As expected, this function is clearly a special case of (6.175).

Two standard constitutive laws, the generalized Hookean11 law (also often termed the

Kirchhoff-Saint-Venant12 law) are discussed next.

11Robert Hooke (1635–1703) was an English scientist.
12Barré de Saint-Venant (1797–1886) was a French engineer.
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Example 6.4.1: Two constitutive laws for compressible isotropic Green-elastic
materials
A commonly employed constitutive law in non-linear elasticity is one is which

S = 2µE+ λ(trE)I , (6.183)

where λ and µ are positive constants. This is a generalization of the classical stress-strain
law of linear elasticity (see equation (6.262) later in this chapter), hence is known as the
generalized Hookean law. Taking into account (4.128) and (6.183), the Cauchy stress for this
material may be expressed as

T =
1

J

[
1

2
λ(IB − 3)− µ

]

B+
1

J
µB2 . (6.184)

It is easy to show by appealing to (6.180) that the constitutive law (6.183) may be derived
from a strain energy function per unit referential mass which satisfies

ρ0Ψ̌(IC, IIC, IIIC) =
1

8
λ(IC − 3)2 +

1

4
µ(I2

C
− 2IC − 2IIC) . (6.185)

Another very useful constitutive law in non-linear elasticity is defined by the strain energy
function

ρ0Ψ̌(IC, IIC, IIIC) =
µ

2
(IC − 3)− µ lnJ +

1

2
λ(J − 1)2 , (6.186)

where, again, λ and µ are positive constants. This is the compressible neo-Hookean law.
Using (6.180), (6.181) and (4.128), it is readily concluded that

S = µ(I−C−1) + λJ(J − 1)C−1 (6.187)

and

T =
1

J
µ(B− i) + λ(J − 1)i . (6.188)

Recall that the pressure p defined in Example 4.7.1(a) is work-conjugate to the volume

change in that

T ·D =

(

T′ +
1

3
(trT) i

)

·
(

D′ +
1

3
(trD) i

)

= T′ ·D′ + (−p) div v , (6.189)

where T′ and D′ are the deviatoric parts of T and D, respectively, and trT = −3p. In an

incompressible isotropic Cauchy-elastic material, the constitutive equation (6.174) is replaced

by

T = −pi + b1B+ b2B
2 , (6.190)
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where p is now a Lagrange multiplier that enforces the incompressibility condition detF = 1.

The latter is tantamount to replacing B with Bdev = FdevF
T
dev, in terms of deviatoric de-

formation gradient defined in Exercise 3-27. A corresponding modification applies to other

functional representations of the Cauchy stress.

In an incompressible Green-elastic material, one may admit a decomposition of the strain

energy rate according to

ρΨ̇c = ρΨ̇− p div v , (6.191)

where Ψc is the strain energy of the incompressible material and Ψ is the strain energy of a

corresponding unconstrained material. Applying (6.137) to the strain energy Ψc yields

T ·D = T · L = ρΨ̇c = ρ
∂Ψ̂

∂F
· Ḟ− p divv =

(

ρ
∂Ψ̂

∂F
FT − pi

)

· L , (6.192)

from which is can be shown upon repeating the procedure used to derive (6.146) that

T = −pi +
1

2
ρ




∂Ψ̂

∂F
FT + F

(

∂Ψ̂

∂F

)T


 , (6.193)

where, again, p is a Lagrange multiplier that enforces the incompressibility condition J = 1.

Example 6.4.2: A constitutive law for incompressible isotropic Green-elastic
material
With reference to (6.190) and Example 6.4.1, one may readily conclude from (6.188) that the
incompressible counterpart of the neo-Hookean law is

T = −pi+ µ(B− i) , (6.194)

where detB = 1.

6.4.1 Initial/boundary-value problems of non-linear elasticity

6.4.1.1 Uniaxial stretching

Consider the response to homogeneous uniaxial stretching of materials following the gener-

alized Hookean and neo-Hookean laws of Example 6.4.1. For this purpose, take a slender

three-dimensional specimen of initial length L and stretch it to final length l while keeping its

lateral surfaces fixed, as in Figure 6.9. For simplicity, the major axis of the slender specimen

is aligned with the basis vector e1 which also coincides with E1.
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e1,E1

l

L u

Figure 6.9. Homogeneous uniaxial stretching of a slender specimen

Given the homogeneity of the imposed deformation, the motion of the specimen is defined

componentwise as

x1 = X1 +
u

L
X1 , x2 = X2 , x3 = X3 , (6.195)

where u = l − L. If follows from (6.195) that the only non-trivial component of the defor-

mation gradient is F11, which is expressed in referential or spatial form as

F11 = 1 +
u

L
=

1

1− u

l

. (6.196)

This, in turn, implies, with the aid of (3.51), (3.60), (3.57), and (3.63) that

C11 = 1 + 2
u

L
+
(u

L

)2

, E11 =
u

L
+

1

2

(u

L

)2

(6.197)

and, also,

B11 =
1

(

1− u

l

)2 , e11 =
u

l
− 1

2

(u

l

)2

, (6.198)

with all other components attaining trivial values. In addition, note from (6.196) that

J = 1 +
u

L
=

1

1− u

l

. (6.199)

Taking into account (6.197)2, (6.198)1, and (6.199), the stress components along the axis

of stretching are given according to (6.183) and (6.184) for the generalized Hookean law as

S11 = (λ+ 2µ)

[
u

L
+

1

2

(u

L

)2
]

(6.200)

and

T11 =
1

1− u

l





1

2
λ







1
(

1− u

l

)2







− µ




+ µ

1
(

1− u

l

)3 . (6.201)
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Likewise, for the compressible neo-Hookean law, substituting (6.197)1, (6.198)1, and (6.199)

into (6.187) and (6.188) yields

S11 = µ




1− 1

1 + 2
u

L
+
(u

L

)2




+ λ

(

1 +
u

L

) u

L

1

1 + 2
u

L
+
(u

L

)2 (6.202)

and

T11 = µ
(

1− u

l

)






1
(

1− u

l

)2 − 1




+ λ




1

1− u

l

− 1



 . (6.203)

Consider now the special case λ 7→ 0. For the generalized Hooke’s law, equations (6.200)

and (6.201) imply that in the limit of infinite compression ( u
L

7→ −1 or, equivalently,
u
l
7→ −∞), S11 7→ −µ and T11 7→ 0, which are physically implausible results. On the other

hand, for the same extreme case, equations (6.202) and (6.203) imply that S11 7→ −∞ and

T11 7→ −∞, as intuitively expected. Representative plots of the stress response predicted by

the two material models are shown in Figure 6.10.

6.4.1.2 Rivlin’s cube

Consider a unit cube made of a homogeneous, isotropic, and incompressible non-linearly

elastic material. First, recall the general form of the constitutive equations for isotropic

non-linearly elastic materials in (6.174) and, letting, as a special case, b2 = 0, write

T = −pi + b1B , (6.204)

where b1(> 0) is a constant, and p is a Lagrange multiplier to be determined upon enforcing

the incompressibility constraint.

Returning to the unit cube, assume that its edges are aligned with the common orthonor-

mal basis {e1, e2, e3} of the reference and current configuration, and that it is loaded by three

pairs of equal and opposite tensile forces, all of equal magnitude, and distributed uniformly

on each face.

Taking into account (4.122) and (6.204), one may write

P = J(−pi + b1B)F−T = −pF−T + b1F , (6.205)

where J = 1 due to the assumption of incompressibility. The tractions, when resolved on

the geometry of the reference configuration, satisfy

Pei = cei , (6.206)
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Figure 6.10. Homogeneous uniaxial stretching of a slender specimen: Second Piola-Kirchhoff

and Cauchy stress components along the stretch direction for λ = 0 and µ = 1.

where c > 0 is the magnitude of the normal tractions per unit area in the reference config-

uration. Note that c is the same for all faces of the cube, since, by assumption, the force

on each face is constant and uniform. Therefore, recalling (4.102), one may take the first

Piola-Kirchhoff stress to be constant throughout the cube and equal to

P = c(e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3) . (6.207)

This further implies that the cube is in equilibrium without any body forces.

On physical grounds, solutions for this boundary-value problem are sought in the form

F = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3 , (6.208)

subject to the incompressibility condition, expressed in this case as λ1λ2λ3 = 1. Returning

to the constitutive equations, substitute (6.207) and (6.208) into (6.205) to conclude that

c = − p

λi
+ b1λi , i = 1, 2, 3 (6.209)
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or

b1λ
2
i = cλi + p , i = 1, 2, 3. (6.210)

Eliminating the pressure p in the preceding equations leads to

b1(λ
2
i − λ2

j ) = c(λi − λj) , (6.211)

where i 6= j. This, in turn, means that

λ1 = λ2 or b1(λ1 + λ2) = c ,

λ2 = λ3 or b1(λ2 + λ3) = c , (6.212)

λ3 = λ1 or b1(λ3 + λ1) = c ,

subject to λ1λ2λ3 = 1.

One solution of (6.212) is obviously

λ1 = λ2 = λ3 = 1 . (6.213)

This corresponds to the cube remaining rigid under the influence of the tensile load. Next,

note, with the aid of (6.212), that it is impossible to find a solution for which the values of λi

are distinct. Therefore, the only remaining option is to seek solutions for which λ1 = λ2 6= λ3,

λ2 = λ3 6= λ1 and λ3 = λ1 6= λ2. Explore one of these solutions, say λ1 = λ2 6= λ3, by setting

λ3 = λ and noting from (6.212) that

λ2 + λ3 = λ3 + λ1 =
c

b1
= η , (6.214)

where η > 0, so that

λ1λ2λ3 = (η − λ)2λ = 1 . (6.215)

The above equation may be rewritten as

f(λ) = λ3 − 2ηλ2 + η2λ− 1 = 0 . (6.216)

To examine the roots of f(λ) = 0, note that

f ′(λ) = 3λ2 − 4ηλ+ η2 , f ′′(λ) = 6λ− 4η , (6.217)

hence the extrema of f occur at

λ1,2 =

{ η

3
where f ′′(

η

3
) = −2η < 0 (maximum)

η where f ′′(η) = η > 0 (minimum)
(6.218)
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and are equal to

f(
η

3
) =

4

27
η3 − 1 , f(η) = −1 . (6.219)

It is also obvious from the definition of f(λ) that f(0) = −1, f(−∞) = −∞, and f(∞) = ∞.

The plot in Figure 6.11 depicts the essential features of f(λ).

0

−1

η/3 η

λ

f

Case I

Case IICase III

Figure 6.11. Function f(λ) in Rivlin’s cube

In summary, λ1 = λ2 = λ3 = 1 is always a solution. Furthermore:

1. If 4
27
η3 < 1, there are no additional solutions (Case I).

2. If 4
27
η3 = 1, there is one set of three additional solutions corresponding to λ =

η

3
=

3

√
1
4
< 1 (Case II).

3. If 4
27
η3 > 1, there are two sets of three additional solutions corresponding to the two

roots of f(λ) which are smaller than η (Case III).

A typical non-trivial deformation of the cube is depicted in Figure 6.12.

X1

X2

X3

Figure 6.12. A solution to Rivlin’s cube (λ1 = λ2 6= λ3, λ3 < 1)

For Case III, it is not required that λ3 > 1 in any of the two sets of solutions. Also, note

that the root λ = λ3 > η is inadmissible because it leads to λ1 = λ2 = η − λ < 0.

ME185



212 6.5. NON-LINEARLY THERMOELASTIC SOLID

6.5 Non-linearly thermoelastic solid

In the case of a non-linearly thermoelastic solid, one may postulate that the Helmholtz free

energy Ψ and the referential heat flux q0 are of the form

Ψ = Ψ̂(F, θ,G) , q0 = q̂0(F, θ,G) . (6.220)

It follows from (6.220)1 that the referential statement of the Clausius-Duhem inequality

in (4.183) may be written as

ρ0

(

∂Ψ̂

∂F
· Ḟ+

∂Ψ̂

∂θ
· θ̇ + ∂Ψ̂

∂G
· Ġ
)

+ ρηθ̇ −P · Ḟ+ q0 ·
G

θ
≤ 0 (6.221)

or, upon rearranging terms,
(

ρ0
∂Ψ̂

∂F
−P

)

· Ḟ+ ρ0

(

∂Ψ̂

∂θ
+ η

)

θ̇ + ρ0
∂Ψ̂

∂G
Ġ + q0 ·

G

θ
≤ 0 . (6.222)

Choosing a homothermal process (that is, taking θ to be constant in referential space, which

also implies that G = 0) for which also Ġ = 0, it is concluded from (6.222) that since Ḟ is

arbitrary (hence can be made equal to −Ḟ), it is necessary that

P = ρ0
∂Ψ̂

∂F
. (6.223)

Next, one may take a time-dependent homothermal process with Ġ = 0. Since θ̇ may be

chosen positive or negative, it follows from (6.222) and (6.223) that

η = −∂Ψ̂

∂θ
. (6.224)

The final choice is to take a homothermal process in which Ġ 6= 0. Since it is also possible

to choose the temperature gradient to be −Ġ, it follows from (6.222), (6.223), and (6.224)

that
∂Ψ̂

∂G
= 0 , (6.225)

which, in light of the original constitutive assumption (6.220), means that

Ψ = Ψ̂(F, θ) . (6.226)

The original Clausium-Duhem inequality (6.222) now reduces to

q0 ·
G

θ
≤ 0 . (6.227)
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Following the analysis for the rigid heat conductor in Section 4.10, the preceding inequality

implies that

q̂0(F, θ, 0) = 0 . (6.228)

Recalling the referential statement of energy balance in (4.170), note that

ǫ̇ = Ψ̇ + η̇θ + ηθ̇ =
∂Ψ̂

∂F
· Ḟ+

∂Ψ̂

∂θ
θ̇ + η̇θ + ηθ̇

=
1

ρ0
P · Ḟ+

(

∂Ψ̂

∂θ
+ η

)

θ̇ + η̇θ =
1

ρ0
P · Ḟ+ η̇θ , (6.229)

where use is made of (4.180), (6.223), and (6.224). Now, substituting (6.229) into (4.170)

yields

ρ0θη̇ = ρ0r −Divq0 (6.230)

or

ρ0η̇ = ρ0
r

θ
− Divq0

θ
, (6.231)

which are completely analogous to equations (4.196) and (4.197) obtained for the rigid heat

conductor.

For the non-linearly thermoelastic solid, just like for the rigid heat conductor, it is possible

to formulate a prescription for the identification of the entropy η. Indeed, for a homothermal

process, where g = 0, hence, due to (6.228), also q0 = 0, equation (6.230) reduces to

θη̇ = r . (6.232)

Therefore, one may again integrate from some initial time t0 where the entropy is assumed

to vanish to find that

η(θ) =

∫ t

t0

r

θ
dt , (6.233)

where θ remains spatially homogeneous but varies with time and r is chosen to impose this

homothermal state.

The purely mechanical theory of non-linear elasticity discussed in Section 6.5 may be

recovered by keeping the temperature θ constant (say, equal to θ̄) and considering the con-

stitutive assumption (6.226) for the Helmholtz free energy as defining the strain energy for

this isothermal case, that is,

Ψ = Ψ̂(F, θ̄) = Ψ̂(F) . (6.234)

It is clear from the preceding derivation that, under isothermal conditions, a non-linearly

thermoelastic solid reduces to a hyperelastic (but not necessarily a Cauchy-elastic) solid.
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6.6 Linearly elastic solid

In this section, a formal procedure is followed to obtain the equations of motion and the

constitutive equations for a linearly elastic solid. To this end, start by writing the linearized

version of linear momentum balance as

L[divT;H]0 + L[ρb;H]0 = L[ρa;H]0 . (6.235)

Now, proceed by making the following three assumptions: First, let the reference configura-

tion be stress-free, that is, assume that if T = T̂(F) = T̄(H), then

T̂(I) = T̄(0) = 0 . (6.236)

It follows that

L[T;H]0 = T̄(0) +DT(0,H) = DT(0,H) , (6.237)

where

DT(0,H) =

[
d

dω
T̄(0+ ωH)

]

ω=0

= �H . (6.238)

The quantity � is called the elasticity tensor. This is a fourth-order tensor that can be

resolved in components as

CC = Cijklei ⊗ ej ⊗ ek ⊗ el . (6.239)

The product �H in (6.238) is written explicitly as

�H = (Cijklei ⊗ ej ⊗ ek ⊗ el)(Hmnem ⊗ en)

= CijklHmnei ⊗ ej [(ek ⊗ el) · (em ⊗ en)]

= CijklHmnδkmδlnei ⊗ ej

= CijklHklei ⊗ ej . (6.240)

In the above equation, note that the component representation of the displacement is

H = Hijei ⊗ ej since, as argued in (5.23), the distinction between referential and spatial

gradients is lost under the assumption of infinitesimal deformations.

At this stage, recall that invariance under superposed rigid-body motions implies that

QT̂(F)QT = T̂(QF) , (6.241)

for all proper orthogonal tensors Q. Taking into account (6.236), it is concluded from the

above equation that

T̂(Q(t)) = 0 , (6.242)
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namely that rigid-body rotation results in no stress. Hence, one may choose a special such

rotation for which Q(t) = I (hence, H(t) = 0) and Q̇(t) = Ω0 (hence, Ḣ = Ω0), where Ω0

is a constant skew-symmetric tensor. In this case, one may write

[
d

dω
T̄(0+ ωḢ)

]

ω=0

= DT(0, Ḣ) = �Ḣ = �Ω0 = 0 . (6.243)

Since Ω0 is an arbitrarily chosen skew-symmetric tensor, this means that CCΩ = 0 for

any skew-symmetric tensor Ω. Recalling (6.237), (6.238), and also taking into account

that (5.31), (5.34) and (5.44) imply H = ε+ ω, it follows that

L[T;H]0 = �(ε+ ω) = �ε = σ . (6.244)

Here, σ is the stress tensor of the theory of linear elasticity. Since the distinction between

partial derivatives with respect toX and x disappears in the infinitesimal case (see discussion

in Section 5.1), it is clear that so does the distinction between the “Div” and “div” operators.

Therefore,

L[divT;H]0 = L[DivT;H]0 = DivL[T;H]0 = Divσ . (6.245)

By way of a second assumption, write

L[ρa;H]0 = ρ̄(0)ā(0) + [Dρ(0,H)]ā(0) + ρ̄(0)Da(0,H) . (6.246)

With reference to (6.246), assume that in the linearized theory the acceleration a satisfies

ā(0) = 0 (that is, there is no acceleration in the reference configuration) and also that

Da(0,H) = a (that is, the acceleration is linear in H). It follows from (6.246) and the

preceding assumptions that

L[ρa;H]0 = ρ0a . (6.247)

To declare the third assumption, first note that

L[ρb;H]0 = ρ̄(0)b̄(0) + [Dρ(0,H)]b̄(0) + ρ̄(0)Db(0,H) . (6.248)

Now, assume that in the linearized theory b̄(0) = 0 (which, in view of the earlier two

assumptions, is tantamount to admitting that equilibrium holds identically in the refer-

ence configuration) and also that Db(0,H) = b (that is, the body force is linear in H).

With (6.248) and the preceding assumptions on b in place, it is easily seen that

L[ρb;H]0 = ρ0b . (6.249)
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Taking into account (6.245), (6.247) and (6.249), equation (6.235) reduces to

Divσ + ρ0b = ρ0a . (6.250)

Of course, neither a nor b are explicit functions of the deformation. The acceleration a

depends on the deformation implicitly in the sense that the latter is obtained from the

motion χ whose second time derivative equals a. On the other hand, b depends on the

motion (and deformation) implicitly through the balance of linear momentum.

In the context of linear elasticity, all measures of stress coincide, that is, the distinction

between the Cauchy stress T and other stress tensors, such as P,S, etc., disappears. To see

this point, recall, for instance, the relation between T and P in (4.122) and take the linear

part of both sides to conclude that

L[T;H]0 = L
[
1

J
PFT ;H

]

0

, (6.251)

which, in light of (6.244), implies that

σ =
1

J̄(0)
P̄(0)F̄T (0) +

[

D
1

J
(0,H)

]

P̄(0)F̄T (0)

+
1

J̄(0)
[DP(0,H)]F̄T (0) +

1

J̄(0)
P̄(0)[DFT (0,H)] . (6.252)

Recalling that the reference configuration is assumed stress-free (hence, P̄(0) = 0), it follows

from the above equation that

σ = DP(0,H) , (6.253)

which implies further that

L[P;H]0 = P̄(0) +DP(0,H) = σ , (6.254)

hence,

L[P;H]0 = L[T;H]0 . (6.255)

Similar derivations apply to deduce the equivalence of T to other stress tensors in the in-

finitesimal theory.

Return now to the constitutive law (6.244) and write it in component form as

σij = Cijklεkl . (6.256)

ME185



Linearly elastic solid 217

In general, the fourth-order elasticity tensor possesses 34 = 81 material constants Cijkl. How-

ever, since balance of angular momentum implies that σij = σji and also, by the definition

of ε in (5.35), εij = εji, it follows that

Cijkl = Cjikl = Cijlk = Cjilk , (6.257)

which readily implies that only 6 × 6 = 36 of these components are independent.13 Next,

recalling (6.156)1, note that in the infinitesimal theory, equation (6.244) may be derived from

a strain energy function Ŵ (ε) per unit volume as

σ =
∂Ŵ

∂ε
, (6.258)

where

W = Ŵ (ε) =
1

2
ε · �ε . (6.259)

It follows from (6.259) and (6.258) that

∂σij

∂εkl
=

∂2Ŵ

∂εij∂εkl
= Cijkl , (6.260)

which, in turn, implies that Cijkl = Cklij. The preceding identity reduces the number of

independent material parameters from 36 to 21.14

The number of independent material parameters can be further reduced by material

symmetry. To see this point, recall the constitutive equation (6.176) for the isotropic non-

linearly elastic solid, whose linearization yields

σ = d∗0IεI+ d1ε , (6.261)

where d∗0 and d1 are constants. Setting d∗0 = λ and d1 = 2µ, one may rewrite the preceding

equation as

σ = λ(tr ε)I+ 2µε . (6.262)

The material parameters λ and µ are known as the Lamé15 constants of isotropic linear

elasticity. Taking the trace of both sides of (6.262) and assuming that λ+ 2
3
µ 6= 0, it is easily

seen that

tr ε =
1

3λ+ 2µ
trσ . (6.263)

13To see this, take each pair (i, j) or (k, l) and use (6.257) to conclude that only 6 combinations of each

pair are independent.
14To see this, write the 36 parameters as a 6 × 6 matrix and argue that only the terms on and above (or

below) the major diagonal are independent. This leaves 1
2 (36− 6) + 6 = 21 independent terms.

15Gabriel Léon Jean Baptiste Lamé (1795-1870) was a French mathematician.
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Therefore, as long as µ 6= 0, one may invert (6.262) to find that

ε =
1

2µ

[

σ − λ

3λ+ 2µ
(trσ)I

]

. (6.264)

It is customary to express the preceding stress-strain relations in terms of an alternative

pair of material constants, that is, the Young’s16 modulus E and the Poisson’s17 ratio ν,

where

E =
µ(3λ+ 2µ)

λ+ µ
, ν =

λ

2(λ+ µ)
(6.265)

and, inversely,

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (6.266)

Substituting (6.266) to (6.262), one finds that

σ =
E

(1 + ν)(1 − 2ν)

[
ν(tr ε)I+ (1− 2ν)ε

]
. (6.267)

Upon inverting (6.267), it follows that

ε =
1

E

[
(1 + ν)σ − ν(trσ)I

]
. (6.268)

6.6.1 Initial/boundary-value problems of linear elasticity

6.6.1.1 Simple tension and simple shear

Consider the case of simple tension along the e3-axis, where σ33 > 0, while all other compo-

nents of the stress are zero. This is clearly an equilibrium state in the absence of body force.

It follows from (6.268) that in an isotropic linearly elastic solid

ε33 =
σ33

E
, ε11 = ε22 = −νσ33

E
, (6.269)

while all shearing components of strain vanish. Given (6.269), one may easily conclude that

a simple tension experiment can be used to determine the material constants E and ν as

E =
σ33

ε33
, ν = −ε11

ε33
= −ε22

ε33
. (6.270)

Clearly, E > 0, since tensile stress should generate extension in the same direction, and,

also, ν > 0, since practically all materials under simple tension experience lateral contraction,

referred to as the Poisson effect .

16Thomas Young (1773–1829) was a British scientist.
17Siméon Denis Poisson (1781–1840) was a French mathematician and physicist.
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In the case of simple shear on the plane of e1 and e2, the only non-zero components

of stress is σ12 = σ21. Again, this is an equilibrium state in the absence of body force.

Recalling (6.268) and (6.266), it follows that for an isotropic linearly elastic solid

ε12 =
σ12

2µ
, (6.271)

while all other strain components vanish. The elastic constant µ can be experimentally

measured by arguing that 2ε12 is the change in the angle between infinitesimal material

line elements initially aligned with the basis vectors e1 and e2. On physical grounds, one

concludes that µ > 0, since shear stress should induce shear strain of the same sense.

6.6.1.2 Uniform hydrostatic pressure and incompressibility

Suppose that an isotropic linearly elastic solid is in equilibrium under a uniform hydrostatic

pressure σ = −pI. Taking into account (6.263), it follows that

tr ε = −3p
1

3λ+ 2µ
= −p

1

K
, (6.272)

where, with the aid of (6.266),

K =
3λ+ 2µ

3
=

E

3(1− 2ν)
(6.273)

is the bulk modulus of elasticity. Equation (6.272) can be used in an experiment to determine

the bulk modulus by noting that, according to (5.46), tr ε = − p

K
is the infinitesimal change

of volume due to the hydrostatic pressure p.

It is clear from (6.272) that K > 0, since hydrostatic compression (p > 0) should result

in reduction of the volume. Using (6.273)2, this means that ν ≤ 0.5. An isotropic linearly

elastic material is incompressible when ν = 0.5.

6.6.1.3 Saint-Venant torsion of a circular cylinder

Consider a homogeneous isotropic linearly elastic cylinder in equilibrium, as in Figure 6.13.

The cylinder has length L, radius R, and is fixed at the one end (x3 = 0), while at the

opposite end (x3 = L) it is subjected to a resultant moment Me3 relative to the point with

coordinates (0, 0, L). Also, the lateral sides of the cylinder are assumed traction-free.

Due to symmetry, it is assumed that the cross-section remains circular and that plane

sections of constant x3 remain plane after the induced deformation. With these assumptions
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e1
e2

e3
eθ

x1

x2

L
M

R
r

Figure 6.13. Circular cylinder subject to torsion

in place, assume that the displacement of the cylinder may be written as

u = αx3reθ , (6.274)

where α is the angle of twist per unit x3-length and r =
√

x2
1 + x2

2. Recalling, again with

reference to Figure 6.13, that eθ = −x2

r
e1 +

x1

r
e2 (see also Appendix A), one may rewrite

the displacement using rectangular Cartesian coordinates as

u = α(−x2x3e1 + x1x3e2) . (6.275)

It follows from (5.35) that the infinitesimal strain tensor has components

[εij] =






0 0 −1
2
αx2

0 0 1
2
αx1

−1
2
αx2

1
2
αx1 0




 . (6.276)

Hence, according to (6.262) the stress tensor has components

[σij ] = µα






0 0 −x2

0 0 x1

−x2 x1 0




 . (6.277)

It can be readily demonstrated with reference to (6.277) that all equilibrium equations

are satisfied in the absence of body forces. Further, for the lateral surfaces, the tractions

vanish, since

[ti] = [σij ][nj] = µα






0 0 −x2

0 0 x1

−x2 x1 0






1

R






x1

x2

0




 =






0

0

0




 . (6.278)
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On the other hand, the traction at x3 = L is

[ti] = [σij ][nj ] = µα






0 0 −x2

0 0 x1

−x2 x1 0











0

0

1




 = µα






−x2

x1

0




 , (6.279)

so that, upon setting x1 = r cos θ and x2 = r sin θ, the resultant force is given by

∫

x3=L

[ti] dA = µα

∫ 2π

0

∫ R

0

r






− sin θ

cos θ

0




 r drdθ

= µα
R3

3

∫ 2π

0






− sin θ

cos θ

0




 dθ = µα

R3

3






cos θ

sin θ

0






2π

0

=






0

0

0




 .

(6.280)

Moreover, the magnitude M of the resultant moment with respect to (0, 0, L) is

M =

∫

x3=L

(x1e1 + x2e2 + Le3)× µα(−x2e1 + x1e2) dA · e3

= µα

∫

x3=L

(x2
1 + x2

2) dA = µα

∫ 2π

0

∫ R

0

r2 rdrdθ = µα
πR4

2
= µαI ,

(6.281)

where I =
πR4

2
is the polar moment of inertia of the circular cross-section.

6.6.1.4 Plane waves in an infinite solid

Consider an infinite solid made of a homogeneous isotropic linearly elastic material. Suppose

that a harmonic longitudinal wave is transmitted along the x1-axis resulting in a displacement

field of the general form

u(X, t) = a sin (klX1 ± ωt)e1 . (6.282)

Here, a is the amplitude of the wave, kl is the wave number for the longitudinal wave, and ω

is the angular frequency. The amplitude is specified, such that a ≪ 1 in order to enforce the

assumption of infinitesimal deformations in the elastic medium. The wave number kl and

the frequency ω are assumed positive, but the relation between them is to be determined.

If the displacement field in (6.282) is to be sustained by the elastic solid, then it must

satisfy the equations of linear momentum balance (6.250), with the stress according to (6.262)

in terms of the infinitesimal strain in (5.35). Equivalently, one may directly apply (6.282)
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to Navier’s equations of motion deduced in Exercise 6-14. It is easy to confirm that, upon

ignoring the body force, the linear momentum balance equations are identically satisfied

along the e2- and e3-direction. However, along the e1-direction, linear momentum balance

reduces to the (longitudinal) wave equation

(λ+ 2µ)u1,11 = ρ0ü1 , (6.283)

hence, given the form of u1 in (6.282),

kl =
ω

cl
, (6.284)

where

cl =

√

λ+ 2µ

ρ0
. (6.285)

is the longitudinal wave speed. Therefore, the relation (6.288) constitutes a necessary condi-

tion for the transmission of the longitudinal wave through the infinite elastic medium.

Next, consider a harmonic transverse wave along the x1-axis corresponding to the dis-

placement field

u(X, t) = a sin (ktX2 ± ωt)e1 , (6.286)

where kt is the wave number for the transverse wave. Repeating the procedure outlined

above leads to the (transverse) wave equation

µu1,22 = ρ0ü1 , (6.287)

which, on account of (6.286), yields the condition

kt =
ω

ct
, (6.288)

in terms of the transverse wave speed ct given by

ct =

√
µ

ρ0
. (6.289)

It is noteworthy that, given (6.266), the ratio between the two wave speeds may be

expressed as

cl
ct

=

√

λ+ 2µ

µ
=

√

2(1− ν)

1− 2ν
, (6.290)

hence it depends only on Poisson’s ratio ν and is greater than one if 0 ≤ ν ≤ 0.5. This

points to an alternative method for estimating ν, which is particularly applicable to physical

bodies that may be adequately modeled as infinite.
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6.7 Viscoelastic solid

Most materials exhibit memory effects, that is, their current state of stress depends not only

on the current state of deformation, but also on the deformation history.

Consider first a broad class of materials with memory, for which the Cauchy stress is

given by

T(X, t) = T̂
(
H
τ≤t

[F(X, τ)];X
)
. (6.291)

This means that the Cauchy stress at time t for a material particle P which occupies point X

in the reference configuration depends on the history of the deformation gradient of that point

up to (and including) time t. Materials that satisfy the constitutive law (6.291) are called

simple.

Invoking invariance under superposed rigid-body motions for the constitutive law (6.291)

and suppressing, in the interest of brevity, the explicit reference to the dependence of func-

tions on X, it is concluded that

Q(t)T̂
(
H
τ≤t

[F(τ)]
)
QT (t) = T̂

(
H
τ≤t

[Q(τ)F(τ)]
)
, (6.292)

for all proper orthogonal tensors Q(τ), where τ ∈ (−∞, t]. Choosing Q(τ) = RT (τ), for all

τ ∈ (−∞, t], it follows that

RT (t)T̂
(
H
τ≤t

[F(τ)]
)
R(t) = T̂

(
H
τ≤t

[U(τ)]
)
, (6.293)

where, according to (3.65)1, F(τ) = R(τ)U(τ). Equation (6.293) can be readily rewritten as

T(t) = R(t)T̂
(
H
τ≤t

[U(τ)]
)
RT (t) . (6.294)

or, equivalently,

T(t) = F(t)U−1(t)T̂
(
H
τ≤t

[U(τ)]
)
U−1(t)FT (t) . (6.295)

Upon recalling (4.128)2, this means that

S(t) = J(t)U−1(t)T̂( H
τ≤t

[U(τ)])U−1(t) = Ŝ( H
τ≤t

[U(τ)]) . (6.296)

As previously argued, one may alternatively write

S(t) = S̄
(
H
τ≤t

[C(τ)]
)

= Š
(
H
τ≤t

[E(τ)]
)
. (6.297)
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Next, proceed to distinguishing between the past (τ < t) and the present (τ = t) in

referring to the measures of deformation that enter the preceding constitutive laws. To this

end, define the Lagrangian strain difference

Et(s) = E(t− s)− E(t) , (6.298)

where, obviously, Et(0) = 0. Clearly, for any given time t, the variable s ≥ 0 is prob-

ing the history of the Lagrangian strain looking further in the past as s increases. Now,

rewrite (6.297)2 as

S(t) = Š
(
H
τ≤t

[E(τ)]
)

= Š
(
H̄
s≥0

[Et(s),E(t)]
)
. (6.299)

Then, define the elastic response function Se as

Se
(
E(t)

)
= Š

(
H̄
s≥0

[0,E(t)]
)

(6.300)

and the memory response function Sm as

Sm
(
H̄
s≥0

[Et(s),E(t)]
)

= Š
(
H̄
s≥0

[Et(s),E(t)]
)
− Š

(
H̄
s≥0

[0,E(t)]
)
. (6.301)

Therefore, the stress response is additively decomposed as

S(t) = Se
(
E(t)

)
+ Sm

(
H̄
s≥0

[Et(s),E(t)]
)
. (6.302)

The first term on the right-hand side of (6.302) represents the stress which depends ex-

clusively on the present state of the Lagrangian strain, while the second term reflects the

dependence of the stress on past Lagrangian strain states. Note that, by definition, the stress

during a time-independent deformation, that is, when E(t) = E0 for all t, with E0 a con-

stant, is equal to S(t) = Se(E0), or, equivalently, S
m
(
H̄
s≥0

[0,E(t)]
)
= 0, as seen immediately

from (6.301) with the aid of (6.298).

All viscoelastic solids can be described by the constitutive equation (6.302). For such

materials, Sm is rate-dependent (that is, it depends on the rate Ė of the Lagrangian strain)

and also exhibits fading memory. The latter means that the effect on the stress at time t

of the deformation at time t − s (s > 0) diminishes as s increases. This condition can be

expressed mathematically as

lim
δ→∞

Sm
(
H̄
s≥0

[Eδ
t (s),E(t)]) = 0 , (6.303)
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s
δ

Et(s)Eδ
t (s)

Figure 6.14. Static continuation Eδ
t (s) of Et(s) by δ.

where

Eδ
t (s) =

{

0 if 0 ≤ s < δ

Et(s− δ) if δ ≤ s < ∞
(6.304)

is the static continuation of Et(s) by δ(> 0). With reference to Figure 6.14, it is seen that the

static continuation is a time shift in the argument Et(s) of the memory response function

Sm by δ. Therefore, the fading memory condition (6.303) implies that, as time elapses,

the effect of earlier Lagrangian strain states on Sm diminishes and, ultimately, disappears

altogether. Condition (6.303) is often referred to as the relaxation property. This is because

it implies that any time-dependent Lagrangian strain process which reaches a steady-state

results in memory response which ultimately relaxes to zero memory stress (plus, possibly,

elastic stress), see Figure 6.15.

s

t tt1 t1t2 t2

E

Et1(s)Et2(s)

S

Se

Figure 6.15. An interpretation of the relaxation property

Under special regularity conditions, the memory response function Sm can be reduced to

a linear functional in Et(s) of the form

Sm
(
H̄
s≥0

[Et(s),E(t)]
)

=

∫ ∞

0

�
(
E(t), s

)
Et(s) ds , (6.305)

where �
(
E(t), s

)
is a fourth-order tensor function of E(t) and s. Of course, �(E(t), s) needs

to be chosen so that Sm satisfy the relaxation property (6.303).
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Upon Taylor expansion of Et(s) in time around t− s, one finds that

Et(s) = E(t− s)−E(t) = −sĖ(t− s) + o(s2) . (6.306)

Ignoring the second-order term in (6.306), which is tantamount to neglecting long-term

memory effects due to the non-uniformity in the rate of Lagrangian strain , one may substi-

tute Et(s) in (6.305) to find that

Sm
(
H̄
s≥0

[Et(s),E(t)]
)

=

∫ ∞

0

�
(
E(t), s

)
{−sĖ(t− s)} ds =

∫ ∞

0

�̄
(
E(t), s

)
Ė(t− s) ds ,

(6.307)

where

�̄
(
E(t), s

)
= −s�

(
E(t), s

)
. (6.308)

Conversely, upon Taylor expansion of Et(s) in time around t, one finds that

Et(s) = E(t− s)− E(t) = −sĖ(t) + o(s2) , (6.309)

which leads to

Sm
(
H̄
s≥0

[Et(s),E(t)]
)

=

∫ ∞

0

�
(
E(t), s

)
{−sĖ(t)} ds

=

[

−
∫ ∞

0

�
(
E(t), s

)
s ds

]

Ė(t) = �
(
E(t)

)
Ė(t) , (6.310)

where

�
(
E(t)

)
= −

∫ ∞

0

�
(
E(t), s

)
s ds . (6.311)

In the following two examples, the general constitutive framework developed here is

reconciled with the classical one-dimensional viscoelasticity models of Kelvin18-Voigt19 and

Maxwell20 under the assumption of infinitesimal deformations.

Example 6.7.1: The Kelvin-Voigt model
The Kelvin-Voigt model comprises a linear spring and a linear dashpot in parallel, where the
spring constant is E and the dashpot constant is η, as in Figure 6.16. It follows that the
uniaxial stress σ is related to the uniaxial strain ε by

σ = Eε+ ηε̇ . (6.312)

18William Thomson, 1st Baron Kelvin (1824–1907) was a British physicist and engineer.
19Woldemar Voigt (1850–1919) was a German physicist.
20James Clerk Maxwell (1831–1879) was a Scottish physicist.
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σ σ

E

η

Figure 6.16. The Kelvin-Voigt model

Clearly, this law is a simple reduction of (6.302), where the memory response is obtained
from a one-dimensional counterpart of (6.310).

Example 6.7.2: The Maxwell model
Consider the Maxwell model of a linear spring and a linear dashpot in series with material
properties as in the Kelvin-Voigt model, as shown in Figure 6.17.

σ σ

E η

Figure 6.17. The Maxwell model

In this case, the constitutive law becomes

ε̇ =
σ̇

E
+

σ

η
, (6.313)

with the accompanying initial condition taken to be σ(0) = 0. The general solution of (6.313)
is

σ(t) = c(t)e−
E
η
t , (6.314)

which, upon substituting into (6.313) leads to

ċ(t) = Ee
E
η
tε̇(t) . (6.315)

This, in turn, may be integrated to yield

c(t) = c(0) +

∫ t

0

Ee
E
η
τ ε̇(τ) dτ . (6.316)
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Noting that the assumed initial condition results in c(0) = 0, one may write that

σ(t) =

[∫ t

0

Ee
E
η
τ ε̇(τ) dτ

]

e−
E
η
t =

∫ t

0

Ee
E
η
(τ−t)ε̇(τ) dτ =

∫ t

0

Ee−
E
η
sε̇(t− s) ds .

(6.317)

Clearly, the stress response of the Maxwell model falls within the constitutive framework
of (6.302), where the elastic response function vanishes identically and the memory response
can be deduced from (6.307).

6.8 Exercises

6-1. An ideal fluid is a material in which the Cauchy stress tensor T is spherical and the heat
flux vector q vanishes identically. An ideal fluid is said to undergo a barotropic motion if its
pressure p and its internal energy ε are functions of the mass density ρ only. Ideal gases are
ideal fluids in which the motion is necessarily barotropic in the absence of heat supply.

Suppose that the pressure p of an ideal gas in the absence of heat supply (that is, for r = 0)
is given by

p = kργ ,

where k(6= 0) and γ(> 1) are material constants. Show that in this case the internal energy
of the ideal fluid is given by

ε =
k

γ − 1
ργ−1 + constant .

6-2. Consider the homogeneous motion χ in the form

x1 = χ1(XA, t) = X1 + γX2 ,

x2 = χ2(XA, t) = X2 ,

x3 = χ3(XA, t) = X3 ,

where γ = γ(t) is a non-negative function with γ(0) = 0, and all components are taken with
reference to a fixed orthonormal basis (see Exercise 3-8).

A body which undergoes this motion is made of a material that satisfies the constitutive
equation

T = aB + bD + cW ,

where a, b and c are material constants, B is the left Cauchy-Green deformation tensor, D
is the rate of deformation tensor, and W is the vorticity tensor.

(a) Identify the physical dimensions (in terms of length L, mass M, and time T) of all con-
stants in the constitutive equation for T.
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(b) Invoke invariance under superposed rigid-body motions to appropriately reduce the
constitutive equation.

(c) For the given motion, determine the components of the Cauchy stress tensor T sustained
by this material.

(d) For the given motion, determine the components of the first Piola-Kirchhoff stress
tensor P and the second Piola-Kirchhoff stress tensor S sustained by this material.

6-3. Let the Cauchy stress tensor T in a continuum satisfy the constitutive equation

T = T̂(F, Ḟ) ,

where F is the deformation gradient.

(a) Invoke invariance under superposed rigid-body motions to reduce the above constitutive
equation to

T = RT̂(U, U̇)RT ,

where R is the rotation tensor and U is the right stretch tensor, both obtained from
the deformation gradient F by using the polar decomposition theorem.

(b) Argue that the constitutive equation of part (a) may be also written in the form

S = Ŝ(E, Ė) .

6-4. Recall that, under superposed rigid-body motions, the position x+ of a particle is given by

x+ = Qx+ c ,

where x is the position of the same particle in the original deformed configuration, Q(t) is a
proper-orthogonal tensor, and c(t) is a vector.

(a) Verify that the velocity v transforms under superposed rigid-body motions as

v+ = Qv + Q̇x+ ċ .

(b) Consider two bodies that are sliding past each other and are in contact at a point P
at time t, as in the figure. Suppose that frictional traction tf on the contact point is

body 1 body 2P
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constitutively specified as

tf = t̂f (v1,v2) ,

as a function of the velocities v1 and v2 of the two bodies at P . Show that invariance
under superposed rigid-body motions requires that

t̂f (v
+
1 ,v

+
2 ) = Qt̂f (v1,v2) .

(c) Use the results of parts (a) and (b) to argue that

tf = t̄f (v1 − v2) .

(d) Taking into account the results of parts (a)–(c), show that

Qt̄f (v1 − v2) = t̄f
(
Q(v1 − v2)

)
.

6-5. Consider a material curve identified with the point sets C0 and C in the reference and current
configuration, respectively.

(a) Prove that for any smooth vector field u(x, t),

d

dt

∫

C
u · dx =

∫

C
(u̇ + LTu) · dx ,

where L is the velocity gradient tensor.

(b) Let C(s) be a curve which is smoothly parametrized by a scalar s ∈ [0, 1] and assume
that C is closed, namely C(0) and C(1) correspond to the same point in space. Use the
result of part (a) to conclude that

d

dt

∫

C
v · dx =

∫

C
a · dx , (†)

where v and a stand for the particle velocity and acceleration vector, respectively. The
integral on the left-hand side of (†) is termed the circulation around C. A motion is
referred to as circulation-preserving if, for every closed material curve, the circulation
is independent of time.

(c) Suppose that the acceleration field is derivable from a potential, namely

a = gradα ,

where α(x, t) is a real-valued function. Prove that the motion is circulation-preserving.
This result is known as Kelvin’s theorem.

6-6. Consider an incompressible Newtonian viscous fluid and let P be a region occupied by a part
of the fluid in the current configuration.
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(a) Use the general theorem of mechanical energy balance to show that

d

dt

∫

P

1

2
ρ0v · v dv + 2µ

∫

P
D ·D dv =

∫

P
ρ0b · v dv +

∫

∂P
t · v da ,

where the material constant µ is assumed positive.

(b) Let R be the (finite) region occupied by the fluid in the current configuration. If v
vanishes on ∂R, show that, in the absence of body force,

d

dt

∫

R

1

2
ρ0v · v dv ≤ 0 .

Comment on the physical interpretation of the above result.

6-7. Consider an incompressible Newtonian viscous fluid which is contained in a fixed and bounded
region R in space, such that at all times

v = 0 on ∂R .

Show that, in this case, the stress power S, defined over the region R as

S(R) =

∫

R
T ·D dv ,

can be also written as

S(R) = 2µ

∫

R
W ·W dv ,

indicating that the stress power is exclusively due to the vorticity tensor.

6-8. The steady planar flow of a Newtonian viscous fluid involves a velocity field v, whose com-
ponents with reference to an orthonormal basis {e1, e2, e3} are written as

v1 =
ρ0
ρ
Ψ,2 ,

v2 = −ρ0
ρ
Ψ,1 ,

v3 = 0 .

In the above equations Ψ = Ψ(x1, x2) is a real-valued function, ρ0 is the homogeneous mass
density in the reference configuration, and ρ is the mass density in the current configuration.

(a) Show that conservation of mass is satisfied identically.

(b) Derive a partial differential equation involving Ψ and ρ under the assumption that the
flow is irrotational.

(c) Simplify the partial differential equation obtained in part (b) for the case where the
fluid is incompressible.
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6-9. Consider a compressible Newtonian viscous fluid which occupies the region R0 defined as

R0 =
{
(x1, x2, x3) | x3 > 0

}
.

The fluid is initially at rest and is set in motion at time t = 0, so that along the bounding
plane x3 = 0 the prescribed velocity is expressed as

vp(t) = Ue1 , (t > 0) ,

where U > 0 is a scalar, and all components are referred to an orthonormal basis {e1, e2, e3}.

(a) Assuming that the velocity profile is of the general form

v = v(x3, t) e1 , (t > 0) ,

compute the components of the acceleration vector, the rate of deformation tensor and
the Cauchy stress tensor.

(b) Use the assumptions and results of part (a) to show that, in the absence of body forces,
the equations of motion reduce to

v,33 =
ρ

µ
v,t ,

where the material constant µ is assumed positive. Notice that the above equation is
identical in form to the one-dimensional heat equation.

(c) Let v be written as
v(x3, t) = f(η) ,

where

η =

√
ρ

µt
x3 .

Argue that the initial condition

v(x3, 0) = 0 , (x3 > 0) ,

and the boundary conditions

lim
x3→0

v(x3, t) = U , lim
x3→∞

v(x3, t) = 0 ,

apply, and use them to show that the function f should satisfy the differential equation

d

dη

(

exp (η2/4)
df

dη

)

= 0 ,

with boundary conditions

f(0) = U , f(∞) = 0 .

(d) Integrate the differential equation obtained in part (c) to find

f = U
(

1 − 1√
π

∫ η

0
exp (−ζ2/4) dζ

)

.
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The above problem is known as Stokes’ First Problem.

Note: Recall the identity

(∫ ∞

0
e−z2 dz

)2

=
π

4
.

6-10. Recall that the Cauchy stress tensor T for an elastic fluid is expressed as

T = −p I ,

where p = p̂(ρ) is a given function of the mass density ρ. Consider the steady motion of
an elastic fluid under the influence of body forces b derivable from a real-valued potential
function β(x) as

b = − grad β .

Assume that the motion takes place at the absence of heat supply and that the heat flux
vector q vanishes identically.

(a) Use the local form of energy balance to conclude that

ρǫ̇ = T ·D ,

where ǫ denotes the internal energy.

(b) Starting from the mechanical energy balance theorem, conclude that the stress power
T ·D takes the form

T ·D = −ṗ + p
ρ̇

ρ
− ρβ̇ − 1

2
ρ ˙v · v .

(c) Use the results of part (a) and (b) to conclude that

d

dt

(

ǫ +
p

ρ
+ β +

1

2
v · v

)

= 0 ,

which implies that the quantity H defined as

H = ǫ +
p

ρ
+ β +

1

2
v · v

remains constant along a particle path. The above result is often referred to as Bernoulli’s
theorem.

(d) Obtain a special case of Bernoulli’s theorem assuming that the fluid is incompressible
and letting the potential function β be defined as

β(x) = g · x ,

where g is a constant vector.
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6-11. Recall that the spatial form of mechanical energy balance is expressed as

d

dt

∫

P

1

2
ρv · v dv +

∫

P
T ·D dv =

∫

P
ρb · v dv +

∫

∂P
t · v da , (†)

where P denotes a region (with smooth boundary ∂P) occupied by part of a continuum in
the current configuration.

(a) Starting from (†), obtain a referential form of mechanical energy balance by appropri-
ately rewriting all domain and boundary integrals over the images P0 and ∂P0 of P and
∂P, respectively, in the reference configuration.

(b) Admit the existence of a strain energy function Ψ = Ψ̂(F) per unit mass in the reference
configuration, such that the stress power is equal to the mass density ρ0 times the
material time derivative of Ψ. Show that the first Piola-Kirchhoff stress tensor is given
by

P = ρ0
∂Ψ

∂F
.

(c) Suppose that the continuum in the reference configuration occupies a finite region R0

and, subsequently, undergoes a motion in the absence of body forces, such that at all
times

p · v = 0 on ∂R0 ,

where p = PN, and N is the outer unit normal to ∂R0. Conclude that the total energy
E, defined as

E =

∫

R0

(ρ0Ψ +
1

2
ρ0v · v) dV ,

remains constant.

6-12. Consider a homogeneous elastic body at rest in the absence of body forces, and let Ψ = Ψ̂(F)
be the strain energy function per unit mass in the reference configuration.

(a) Show that

Div (ρ0ΨI − FTP) = 0 .

(b) Use the result of (a) to conclude that given any region P0 of the body,

∫

∂P0

(ρ0ΨN − FTp) dA = 0 ,

where p = PN, and N is the outward unit normal to the boundary ∂P0.

6-13. Recall that Green-elastic materials are characterized by the existence of a strain energy
function Ψ = Ψ̄(C) per unit referential mass, such that the second Piola-Kirchhoff stress is
defined as

S = 2ρ0
∂Ψ̄

∂C
,
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where ρ0 is the mass density in the reference configuration and C is the right Cauchy-Green
deformation tensor.

Let the strain energy function for a given Green-elastic material be defined by

ρ0Ψ̄ =
µ

2
(IC − 3)− µ ln J +

λ

2
(ln J)2 ,

where IC = trC, J = (detC)1/2 and λ, µ are material constants. Such a material is referred
to as compressible neo-Hookean.

(a) Find an expression for the second Piola-Kirchhoff stress of a compressible neo-Hookean
material in terms of C, λ and µ.

(b) Use the result of part (a) to find an expression for the Cauchy stress of a compress-
ible neo-Hookean material in terms of B, λ and µ, where B is the left Cauchy-Green
deformation tensor.

(c) Linearize the constitutive equation of either part (a) or part (b) relative to the reference
configuration to deduce the stress-strain relation

σ = 2µε+ λ(tr ε)I

of isotropic linear elasticity, where ε is the infinitesimal strain tensor, σ the stress tensor
of the infinitesimal theory, and I the identity tensor.

6-14. Consider a homogeneous isotropic linearly elastic solid, and let u = uiei be the displacement
vector resolved on a fixed orthonormal basis {e1, e2, e3}. Show that the displacement field
satisfies Navier’s equations of motion,

µ div(gradu) + (λ + µ) grad(divu) + ρ0b = ρ0ü ,

where λ and µ are the Lamé constants.

6-15. For a homogeneous linearly elastic solid, the strain energy per unit volume is given by

W =
1

2
Cijklεijεkl ,

where Cijkl are the components of the fourth-order elasticity tensor.

(a) Obtain a special form of W for the case of an isotropic material (express W in terms
of the Lamé constants λ and µ).

(b) Decompose the components εij into their spherical and deviatoric parts, and argue that
positive-definiteness of the elasticity tensor implies that

µ > 0 , λ +
2

3
µ > 0 .

(c) Use the inequalities obtained in part (b) to derive corresponding restrictions on the
bulk modulus K, Young’s modulus E, and Poisson’s ratio ν.
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6-16. Consider a deformable continuum in the shape of an infinitely long thick-walled cylinder
of inner radius Ri and outer radius Ro, which is made of a homogeneous isotropic linearly
elastic material. A fixed orthonormal basis {e1, e2, e3} is chosen so that the major axis of
the cylinder lies along e3. In the absence of body forces, the cylinder is subjected to internal
pressure pi and external pressure pe, and is assumed to undergo a radially symmetric motion
in the (x1, x2)-plane.

x1

x2

r
θ

(a) Use cylindrical polar coordinates (r, θ, x3), where

x1 = r cos θ , x2 = r sin θ ,

to conclude that, if the effects of inertia are neglected, the boundary-value problem
yields a single non-trivial displacement equation of motion, in the form

d

dr

[1

r

d

dr
(rur)

]

= 0 . (†)

In the above equation, the radial displacement ur at a point is defined as the projection
of the displacement vector u in the direction of the position vector x of the point.

(b) Integrate (†) twice to obtain a general expression for the radial displacement as

ur = Ar +
B

r
,

where A and B are undetermined constants. Also, calculate the corresponding polar
components of the infinitesimal strain tensor and the stress tensor.

(c) Use the stress boundary conditions at r = Ri and r = Ro to determine the constants A
and B.

6-17. Consider a non-linearly elastic material with stored energy Ψ = Ψ̂(F) per unit mass.

(a) Show that

T = ρ
∂Ψ̂(F)

∂F
FT .
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(b) Suppose that, under superposed rigid-body motions, the strain energy function remains
invariant, that is

Ψ̂(F) = Ψ̂(QF) ,

for all proper orthogonal tensors Q = Q(t). Invoke invariance to conclude that

∂Ψ̂(F)

∂F
· Ḟ =

∂Ψ̂(QF)

∂(QF)
· (Q̇F+QḞ) ,

for all proper orthogonal tensors Q = Q(t).

(c) Taking into account the result of part (b), choose an appropriate superposed rigid-body
motion to deduce that

∂Ψ̂(F)

∂F
FT ·Ω = 0 ,

for all skew-symmetric tensors Ω.

(d) What does the result of part (c) imply for the relation between invariance of the stored
energy function under superposed rigid-body motions and the balance of angular mo-
mentum?

6-18. Consider a two-dimensional incompressible continuum which, when unstressed, occupies a
square region R0 of side a, and suppose that it is formed through a pair of convergent rigid
walls into a rectangular region R, as shown in the figure. Further, assume that the body is
in equilibrium without body forces and its deformation is spatially homogeneous.

a

a a/2

b

R0 R

(a) Determine the length b of the deformed configuration of the body.

(b) Find the deformation gradient F, the left Cauchy-Green deformation tensor B, and the
Almansi (Eulerian) strain tensor e at any point of the body.

(c) Assume that the material is homogeneous and elastic, and, further, obeys the neo-
Hookean law, according to which the Cauchy stress T is given by

T = µB+ pi ,

where µ is a (given) material parameter, p is a (yet unknown) pressure, and i is the
spatial second-order identity tensor. Determine p as a function of µ and the deformation.

(d) Taking into account the result of part (c), find the traction acting on the body along
any one of its two horizontal edges.
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6-19. Consider a body in equilibrium at the absence of body forces and let it occupy in its reference
configuration the region R0 with boundary ∂R0. Recall that the mean first Piola-Kirchhoff
stress P̄ and deformation gradient F̄ are defined respectively as

P̄ =
1

V

∫

R0

P dV , F̄ =
1

V

∫

R0

F dV ,

where V is the volume of R0.

(a) Using the equilibrium equation, the preceding definitions of the mean stress and defor-
mation gradient, and the divergence theorem, show that

1

V

∫

R0

P · F dV − P̄ · F̄ =
1

V

∫

∂R0

(p− P̄N) · (x− F̄X) dA , (†)

where p is the referential traction vector, and X, x are the positions of a material point
in the reference and current configuration, respectively.

(b) Suggest two distinct sets of boundary conditions on ∂R0 for which equation (†) reduces
to

1

V

∫

R0

P · F dV = P̄ · F̄ . (‡)

This is known as the Hill-Mandel condition.

(c) State in a sentence the meaning of equation (‡).

6-20. Consider a body that undergoes simple shear of the form

x1 = χ1(XA, t) = X1 + γX2 ,

x2 = χ2(XA, t) = X2 ,

x3 = χ3(XA, t) = X3 ,

where γ(t) is a non-negative function defined as

γ(t) =

{
αt for 0 ≤ t < 1/α
1 for t > 1/α

,

with α > 0, and where all components are resolved on fixed orthonormal bases {EA} and
{ei} in the reference and current configuration, respectively.

(a) Assume that the body is made of a viscoelastic material for which the second Piola-
Kirchhoff stress S is defined as

S = Se + Sm ,

where
Se = λ(trE)I+ 2µE

and
Sm = ηĖ ,

and λ, µ, η are positive constants.

Determine the shear stress S12 for this material and plot S12 against the shear strain
E12 for λ = µ = 1, η = 0.1 and α = 0.1, 1.0 and 10.0.
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(b) Repeat the analysis of part (a) for a viscoelastic material in which the stress is consti-
tutively defined as

S(t) = E

∫ ∞

0
e−ζsĖ(t− s) ds ,

where E = 1, ζ = 10.0, and S(0) = 0.
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Chapter 7

Multiscale modeling

It is sometimes desirable to relate the theory of continuous media to theories of particle

mechanics. This is, for example, the case, when one wishes to analyze metals and semi-

conductors at very small length and time scales, at which the continuum assumption is not

unequivocally satisfied. In such cases, multiscale analyses offer a means for relating kinematic

and kinetic information between the continuum and the discrete system.

7.1 The virial theorem

The virial theorem is a central result in the study of continua whose constitutive behavior

is derived from an underlying microscale particle system.

Preliminary to the derivation of the theorem, recall from Exercise 4-18(b), that the mean

Cauchy stress T̄ in a material region P satisfies the equation

(volP)T̄ =

∫

∂P
t⊗ x da−

∫

P
divT⊗ x dv . (7.1)

Taking into account (4.81), the preceding equation may be rewritten as

(volP)T̄ =

∫

∂P
t⊗ x da+

∫

P
ρ(b− a)⊗ x dv

=

∫

∂P
t⊗ x da+

∫

P
ρb⊗ x dv − d

dt

∫

P
ρẋ⊗ x dv +

∫

P
ρẋ⊗ ẋ dv . (7.2)

Next, define the (long) time-average 〈φ〉 of a time-dependent quantity φ = φ(t) as

〈φ〉 = lim
T→∞

1

T

∫ t0+T

t0

φ(t) dt , (7.3)
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and note that, as long the rigid translations are suppressed,

〈 d

dt

∫

P
ρẋ⊗ x dv

〉

= lim
T→∞

1

T

[∫

P
ρẋ⊗ x dv

∣
∣
∣
t=t0+T

−
∫

P
ρẋ⊗ x dv

∣
∣
∣
t=t0

]

= 0 . (7.4)

The preceding time-average vanishes due to the assumed boundedness of the domain integral
∫

P ρẋ⊗ x dv at all times. In the case of a rigid translation, it is easy to show that the quantity

inside the square bracket in (7.4) is not bounded, therefore the time average of d
dt

∫

P ρẋ⊗x dv

does not necessarily vanish.

Using (7.4), the time-averaged counterpart of the mean-stress formula (7.2) takes the

form

〈(volP)T̄〉 =
〈∫

∂P
t⊗ x da

〉

+
〈∫

P
ρb⊗ x dv

〉

+
〈∫

P
ρẋ⊗ ẋ dv

〉

. (7.5)

Turn attention now to a system of N particles whose motion is governed by Newton’s

Second Law, namely

mαẍα = fα , α = 1, 2, . . . , N , (7.6)

where mα and xα are the mass and the current position of particle α, respectively, while fα

is the total force acting on particle α. Taking the tensor product of the preceding equation

with xα, it is easy to deduce the relation

mα d

dt
(ẋα ⊗ xα)−mαẋα ⊗ ẋα = fα ⊗ xα . (7.7)

Moreover, taking time averages of (7.7) for the totality of the particles and assuming bound-

edness of the term
∑N

α=1m
αẋα ⊗ xα, it is concluded that

−
〈 N∑

α=1

mαẋα ⊗ ẋα
〉

=
〈 N∑

α=1

fα ⊗ xα
〉

. (7.8)

Recognizing now that the total force fα acting on a given particle is the sum of an internal

part f int,α (due to interaction between particles) and an external part f ext,α (due to all sources

outside the particle system), the preceding equation may be rewritten as

−
〈 N∑

α=1

mαẋα ⊗ ẋα
〉

=
〈 N∑

α=1

f int,α ⊗ xα
〉

+
〈 N∑

α=1

f ext,α ⊗ xα
〉

(7.9)

or, upon rearranging terms,

−
〈 N∑

α=1

f int,α ⊗ xα
〉

=
〈 N∑

α=1

f ext,α ⊗ xα
〉

−
〈 N∑

α=1

mαẋα ⊗ ẋα
〉

. (7.10)
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Comparing (7.5) to (7.10) and ignoring the body forces in the continuum problem, it

can be argued that there is a one-to-one correspondence between the three terms in each

statement. Therefore, one may argue that if the region P corresponds to this set of particles,

the mean stress in this region satisfies

〈(volP)T̄〉 .
= −

〈 N∑

α=1

f int,α ⊗ xα
〉

, (7.11)

which, with the aid of (7.10), leads to an estimate of the time average of the mean Cauchy

stress in terms of the underlying particle system dynamics as

〈(volP)T̄〉 .
=
〈 N∑

α=1

mαẋα ⊗ ẋα
〉

+
〈 N∑

α=1

f ext,α ⊗ xα
〉

. (7.12)

Equation (7.12) is a statement of the virial theorem. It is interesting to note that (7.12)

suggests that the time-averaged mean stress may be expressed as the sum of a kinetic part

due to particle velocities and a part due to the external forces.

7.2 Exercises

7-1. Consider a continuum body which occupies the region R, and in which any material particle
i is subject to a force fi due to its interaction with any other material particle j. Also, let
the force fi be derived from a potential V = V̂ (xi,xj) as

fi =
∂V

∂xi
, (†)

where xi and xj are the position vectors of particles i and j relative to a fixed point O.

(a) Invoke invariance under superposed rigid motions to conclude that the potential V
depends only on the relative position of the two particles, namely that V = V̄ (r),
where r = xi − xj .

(b) Argue a further reduction in the constitutive dependence of the potential, in the form
V = Ṽ (r), where r =

√
r · r.

(c) Use the reduced form of the potential obtained in part (b) and the constitutive relation
(†) to conclude that fi = −fj, where fj is the force acting on particle j due to its
interaction with particle i.

(d) Derive an expression for the total force f(x) at some material point with position vector
x due to its interaction with the rest of the particles in the body.
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(e) Assume that the mutual interaction can be modeled by a Lennard-Jones potential,
which is defined as

Ṽ (r) = c

[(rm
r

)12
− 2

(rm
r

)6
]

,

where c and rm are material parameters. Use this potential and equation (†) to derive
an expression for the force fi. What is the physical interpretation of the parameter rm?
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Appendix: Some useful results

A.1 Cylindrical polar coordinate system

Let the orthonormal basis vectors of the cylindrical polar coordinate system be {er, eθ, ez},
and note, with reference to Figure A.1, that they are related to the fixed Cartesian orthonor-

mal basis {e1, e2, e3} according to

er = e1 cos θ + e2 sin θ ,

eθ = − e1 sin θ + e2 cos θ , (A.1)

ez = e3 .

Here, θ is the angle formed between the vectors e1 and er. Conversely, one may write

e1

e2

e3, ez

er

eθ

θ

Figure A.1. Unit vectors in the Cartesian and cylindrical polar coordinate systems

e1 = er cos θ − eθ sin θ ,

e2 = er sin θ + eθ cos θ , (A.2)

ez = e3 .

Further, since for any vector x,

x = xiei = rer + zez , (A.3)

one may easily conclude from (A.2) that

r =
√

x2
1 + x2

2 , θ = arctan
x2

x1
, z = x3 (A.4)

and, conversely, from (A.1) that

x1 = r cos θ , x2 = r sin θ , x3 = z . (A.5)
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It is also easy to show, with the aid of (A.1), that

der
dθ

= eθ ,
deθ
dθ

= −er , (A.6)

hence, recalling (A.3)2,

dx = drer + rdθeθ + dzez . (A.7)

The most efficient way to derive expressions for the gradients of scalar and vector func-

tions in the cylindrical polar coordinate system is to use the coordinate-free definitions (2.67)

and (2.71). To this end, start from (2.67) and observe that the differential of the scalar func-

tion φ(x) is defined in coordinate-free manner as

dφ = gradφ · dx . (A.8)

When using polar coordinates, it follows that

dφ = gradφ · (drer + rdθeθ + dzez)

=
∂φ

∂r
dr +

∂φ

∂θ
dθ +

∂φ

∂z
dz ,

(A.9)

where use is made of (A.7). Equating the right-hand sides of (A.9)1,2 yields

gradφ · er =
∂φ

∂r
, r gradφ · eθ =

∂φ

∂θ
, gradφ · ez =

∂φ

∂z
, (A.10)

which, in turn, implies that

gradφ =
∂φ

∂r
er +

1

r

∂φ

∂θ
eθ +

∂φ

∂z
ez . (A.11)

Following a completely analogous procedure, one may use (2.71) to define the differential

of the vector function v(x) as

dv = gradv dx , (A.12)

where, as usual,

v = vrer + vθeθ + vzez . (A.13)

Taking into account (A.6), (A.7), and (A.13), one finds that

dv = gradv (drer + rdθeθ + dzez)

=
∂v

∂r
dr +

∂v

∂θ
dθ +

∂v

∂z
dz

=
∂vr
∂r

drer +
∂vθ
∂r

dreθ +
∂vz
∂r

drez

+

(
∂vr
∂θ

dθer + vrdθeθ

)

+

(
∂vθ
∂θ

dθeθ − vθdθer

)

+
∂vz
∂θ

dθez

+
∂vr
∂z

dzer +
∂vθ
∂z

dzeθ +
∂vz
∂z

dzez .

(A.14)
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Equating the right-hand sides of (A.14)1,3 implies that

gradv er =
∂vr
∂r

er +
∂vθ
∂r

eθ +
∂vz
∂r

ez

gradv eθ =
1

r

(
∂vr
∂θ

− vθ

)

er +
1

r

(
∂vθ
∂θ

+ vrdθ

)

+
1

r

∂vz
∂θ

ez

gradv ez =
∂vr
∂z

er +
∂vθ
∂z

eθ +
∂vz
∂z

ez .

(A.15)

from where it is readily concluded that

gradv =
∂vr
∂r

er ⊗ er +
∂vθ
∂r

eθ ⊗ er +
∂vz
∂r

ez ⊗ er

+
1

r

(
∂vr
∂θ

− vθ

)

er ⊗ eθ +
1

r

(
∂vθ
∂θ

+ vr

)

eθ ⊗ eθ +
1

r

∂vz
∂θ

ez ⊗ eθ

+
∂vr
∂z

er ⊗ ez +
∂vθ
∂z

eθ ⊗ ez +
∂vz
∂z

ez ⊗ ez . (A.16)

The divergence of the vector function v(x) is obtained from (A.16) by appealing to the

definition (2.76), and is given by

div v =
∂vr
∂r

+
1

r

(
∂vθ
∂θ

+ vr

)

+
∂vz
∂z

. (A.17)

Lastly, given a symmetric tensor function T(x), expressed using cylindrical polar coordinates

as

T = Trrer ⊗ er + Trθ(er ⊗ eθ + eθ ⊗ er) + Trz(er ⊗ ez + ez ⊗ er)+

Tθθeθ ⊗ eθ + Tθz(eθ ⊗ ez + ez ⊗ eθ) + Tzzez ⊗ ez , (A.18)

one may find that its divergence is given by

divT =

(
∂Trr

∂r
+

Trr − Tθθ

r
+

1

r

∂Trθ

∂θ
+

∂Trz

∂z

)

er+

(
∂Trθ

∂r
+

2Trθ

r
+

1

r

∂Tθθ

∂θ
+

∂Tθz

∂z

)

eθ+

(
∂Trz

∂r
+

Trz

r
+

1

r

∂Tθz

∂θ
+

∂Tzz

∂z

)

ez . (A.19)

Indeed, take a constant vector c, such that

c = c1e1 + c2e2 + c3e3 = crer + cθeθ + czez , (A.20)
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where, upon recalling (A.2),

cr = c1 cos θ + c2 sin θ , cθ = −c1 sin θ + c2 cos θ , cz = c3 , (A.21)

hence

∂cr
∂θ

= −c1 sin θ + c2 cos θ = cθ ,
∂cθ
∂θ

= −c1 cos θ − c2 sin θ = −cr . (A.22)

Given the symmetry of T, one may write in cylindrical polar coordinates

Tc = Trrcrer + Trθcreθ + Trzcrez

+ Trθcθer + Tθθcθeθ + Tθzcrez

+ Trzczer + Tθzczeθ + Tzzczez . (A.23)

It follows from (A.19) that

div (Tc) =
∂

∂r
(Trrcr + Trθcr + Trzcr)

+
1

r

[
∂

∂θ
(Trθcr + Tθθcθ + Tθzcz) + Trrcr + Trθcr + Trzcr

]

+
∂

∂z
(Trzcr + Tθzcθ + Tzzcz) , (A.24)

from which one may deduce (A.19) upon recalling the coordinate-free definition (2.79) and

using (A.22).
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ǫ-δ identity, 27

acceleration, 33
apparent, 74
centrifugal, 74
Coriolis, 74
Euler, 74
translational, 74

adiabatic process, 137
axial vector, 17

balance of energy, 129
mechanical, 128
thermal, 130

basis
right-hand, 11

body, 32
bulk modulus, 219

Cauchy tetrahedron, 113
Cauchy’s lemma, 113, 131
Cauchy’s stress theorem, 116, 123
Cauchy-Green deformation tensor

left, 47
right, 46

Cayley-Hamilton theorem, 21, 203
circulation, 99, 230
Clausius-Duhem inequality, 133, 212
closed-cycle, 199
closure, 10
configuration, 32

current, 34
material, 38
reference, 33

conservation law, 111
constitutive laws

determinism, 173
dimensional consistency, 172
invariance under superposed rigid-body mo-

tions, 173

locality, 172
tensorial consistency, 172

cross product, 10
left, 29
right, 29

curl, 26

deformation
infinitesimal, 163
spatially homogeneous, 47, 61

deformation gradient
deviatoric, 92
inverse, 44

deformation gradient tensor, 43
displacement, 83, 161
displacement gradient tensor, 162
divergence

of tensor function, 25
of vector function, 24
referential, 124
spatial, 124

divergence theorem, 99
dot product, 8

elastic response function, 224
elasticity tensor, 214
elements, 4
entropy, 133
equilibrium equations, 111
Euclidean point space, 9
Euler equations

compressible, 179
Euler’s laws, 111
Eulerian description, 35
extensive quantity, 105

fading memory, 224
First Law of Thermodynamics, see balance of en-

ergy
flow
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Couette, 191
creeping, 185
Poiseuille, 192
Stokes, 185
uniform, 180

fluid
elastic, 177
ideal
irrotational, 180

linear viscous, 184
Newtonian viscous, 184
non-Newtonian, 183
Reiner-Rivlin, 183

force
body, 109
contact, 109

form-invariance, 138, 140
energy balance, 142
linear momentum balance, 140
mass balance, 140

Fourier’s law, 133, 136

Gâteaux differential, 160
gas

ideal, 228
generalized Hookean law, 204, 205
gradient

scalar function, 22
vector function, 23

Green’s First Identity, 146
Green’s Second Identity, 146
Green-Naghdi-Rivlin theorem, 145
group, 201

orthogonal, 201
symmetry, 201

heat capacity, 133
heat conductivity, 133
heat flux, 129
heat flux vector, 131
heat supply, 129
Helmholtz free energy, 134
Helmholtz-Hodge decomposition, 186
Hill-Mandel condition, 238
homothermal process, 136
hydrostatic pressure, 120

ideal fluid, 228
incompressible, 179

identity tensor
referential, 45

spatial, 45
two-point, 45

index
dummy, 13
free, 13

inertia tensor, 149
internal energy, 129
invariant

principal, 31
invariants

principal, 19
isentropic process, 137

Jacobian determinant, 44
Jaumann rate, 175

Kelvin’s theorem, 230
Kelvin-Voigt model, 226
Killing’s theorem, 67
kinetic energy, 126
Kronecker delta symbol, 8

Lagrange’s criterion of materiality, 38
Lagrangian description, 34
Lagrangian strain

generalized, 92
Lamé constants, 217
Laplace’s equation, 147

Dirichlet Problem, 147
Levi-Civita symbol, see also permutation symbol
linear space, 5
linear subspace, 7
localization theorem, 103

mapping, 12
composition, 12
configuration, 32
domain, 12
linear, 12
range, 12

mass, 105
mass continuity equation, 107
mass density, 105

referential, 106
material

incompressible, 179, 219
isotropic, 203
path-independent, 200
simple, 223

material description, 33
Maxwell model, 227
measure, 105
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memory response function, 224
Mohr’s stress representation, 151
moment

body, 110
contact, 110

momentum
angular, 109
linear, 109

motion, 32
barotropic, 228
circulation-preserving, 230
invertible, 44
irrotational, 69
isochoric, 63, 179
rigid, 67
rigid-body, 40
steady, 40
steady at a point, 40
unsteady, 40
volume-preserving, 63, 179

Nanson’s formula, 65
Navier’s equations of motion, 222, 235
Navier-Stokes equations

compressible, 184
neo-Hookean law, 237

compressible, 205
incompressible, 206

no-slip condition, 181
Noll’s rule, 202

objective, 78
objective rate, 175
objective stress rate

co-rotational, 154
convected, 154
Cotter-Rivlin, see also convected
Green-McInnis, 155
Jaumann, see also co-rotational
Oldroyd, 155
Truesdell, 155

octahedral stress
normal, 153
shear, 153

particle path, 40
pathline, 40
permutation symbol, 11
Piola identity, 145
Piola transform, 155, 156
placement, 34

point, 9
Poisson effect, 218
Poisson’s ratio, 218
polar decomposition

left, 51
right, 50

polar decomposition theorem, 49
polar factors, 50
polar moment of inertia, 221
pressure, 120
principal directions, 53
principle of angular momentum balance, 110
principle of balance of mass, see principle of mass

conservation
principle of linear momentum balance, 110
principle of mass conservation, 107
projection methods, 187

Radon-Nikodym theorem, 105
rate of change

convective, 38
rate of heating, 129
rate-of-deformation tensor, 66
referential description, 34
region

bounded, 98
smooth, 98

relaxation property, 225
representation theorem for isotropic real-valued

functions of a tensor variable, 204
representation theorem for isotropic tensor-valued

functions of a real variable, 177
representation theorem for isotropic tensor-valued

functions of a tensor variable, 183
representation theorem for tensor-valued functions

of a tensor variable, 203
Reynolds’ transport theorem, 101
rigid translation, 142
rigid-body motion

superposed
inertial, 141

Rivlin’s cube, 208
Rodrigues’ formula, 59, 88
rotation tensor

infinitesimal, 166
rotor, see also curl

Saint-Venant law, see also generalized Hookean
law

scalar
differential, 245
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set, 4
Cartesian product, 5
closed, 10
difference, 4
empty, 4
intersection, 4
linearly independent, 7
open, 10
union, 4

shear
engineering, 170
pure, 121

shifter, 45
Signorini’s theorem, 152
simple shear, 81
simply connected, 186
solid

non-linearly elastic, 197
Cauchy-elastic, 200
Green-elastic, 200
hyperelastic, 200

viscoelastic, 224
space

distance between points, 10
origin, 10

spatial description, 35
specific heat supply, 129
spectral representation theorem, 53
spin tensor, 66
stagnation point, 40
static continuation, 225
Stokes’ First Problem, 233
Stokes’ Second Problem, 194
Stokes’ theorem, 99
strain energy, 197
strain energy function, 197
strain tensor

Almansi, see Eulerian
Eulerian, 49
infinitesimal, 166
Lagrangian, 49

streakline, 41
streamline, 41
stress

deviatoric, 205
stress power, 127
stress response function, 171
stress tensor

Biot, 154
Cauchy, 116
first Piola-Kirchhoff , 123

Kirchhoff, 125
nominal, 125
second Piola-Kirchhoff, 126

stress vector, 109
stress-rate response function, 171
stretch, 45

logarithmic, 69
principal, 53

stretch tensor
left, 50
right, 50

subgroup, 201
subset, 4

proper, 4

temperature
absolute, 133
empirical, 133

tension
pure, 120

tensor, 12
adjugate, 93
coaxial, 154
components, 15
contraction, 19
fourth-order, 214
identity, 12
inner product, 19
inverse, 20
invertible, 20
multiplication, 18
orthogonal, 21
improper, 57
proper, 57

positive-definite, 18
referential
objective, 78

reflection, 60
rotation, 59
shifter, 198
skew-symmetric, 16
spatial
objective, 78

symmetric, 16
trace, 19
transpose, 16
two-point, 44
objective, 78

zero, 13
tensor function

isotropic, 177, 183
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tensor product, 13
tensors

mutually orthogonal, 20
time average, 240
time derivative

material, 37
particle, see also material
spatial, 38
substantial, see also material
total, see also material

total internal energy, 130
traction

normal, 119
shearing, 119

traction vector, 110
triple product

scalar, 11, 62
vector, 28

vector
Cartesian component, 9
magnitude, 8
orthogonal, 8
orthonormal, 8
spatial
objective, 78

vector field
solenoidal, 186

vector space, 5
basis, 7
Euclidean, 8
finite dimensional, 7
infinite-dimensional, 7

velocity, 33
angular, 74
apparent, 74
translational, 74

velocity gradient tensor
spatial, 65

viscosity coefficients, 184
vortex line, 70
vorticity tensor, 66
vorticity vector, 69

wave
angular frequency, 221
longitudinal, 221
transverse, 222

wave number, 221
wave speed

longitudinal, 222
transverse, 222

work-conjugate, 128

Young’s modulus, 218
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