
MECHANICAL PRINCIPLES 

 

 

   THIN WALLED VESSELS and THICK WALLED CYLINDERS 

 

 

You should judge your progress by completing the self assessment exercises. These 

may be sent for marking at a cost (see home page). 

 

 

When you have completed this tutorial you should be able to do the following. 

 

 Define a thin walled cylinder. 

 

 Solve circumferential and longitudinal stresses in thin walled cylinders. 

 

 Solve circumferential and longitudinal stresses in thin walled spheres. 

 

 Calculate the bursting pressure of thin walled cylinders and spheres. 

 

 Define a thick walled cylinder. 

 

 Solve circumferential, radial and longitudinal stresses in thick walled cylinders. 

 

 Calculate changes in diameter and volume due to pressure. 

 

 Solve problems involving the compression of fluids into pressure vessels. 

 

 Solve problems involving interference fits between shafts and sleeves. 
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1. THIN WALLED CYLINDER. 

 

A cylinder is regarded as thin walled when the wall thickness t is less than 1/20 of the diameter D. 

When the wall is thicker than this, it is regarded as a thick wall and it is treated differently as 

described later. 

 

Consider a cylinder of mean diameter D, wall thickness t and length L. When the pressure inside is 

larger than the pressure outside by p, the cylinder will tend to split along a length and along a 

circumference as shown in figures 1 and 2. 

 
Figure  1 

 
Figure 2 

The stress produced in the longitudinal direction is L and in the circumferential direction is c. 

These are called the longitudinal and circumferential stresses respectively. The latter is also called 

the hoop stress. 

 

Consider the forces trying to split the cylinder about a circumference (fig.2). So long as the wall 

thickness is small compared to the diameter then the force trying to split it due to the pressure is 

  
4

πD
ppAF

2

 ..........................(1.1) 

 

So long as the material holds then the force is balanced by the stress in the wall. The force due to 

the stress is 

 

πDtσmetal  theof area by the multiplied σF LL   ..............(1.2) 

 



© D.J.DUNN   4 

 

Equating 1.1 and 1.2 we have 

  
4t

pD
σL  ...................................(1.3) 

Now consider the forces trying to split the cylinder along a length. 

The force due to the pressure is 

 

  pLDpAF   ..............................(1.4) 

 

So long as the material holds this is balanced by the stress in the material. The force due to the 

stress is 

 

2Ltσ  metal  theof area y the multiplied  σF CC   .................(1.5) 

 

Equating 1.4 and 1.5 we have 

  
2t

pD
σC   .........................(1.6) 

 

It follows that for a given pressure the circumferential stress is twice the longitudinal stress. 

 

 

 WORKED EXAMPLE No.1 

 

 A cylinder is 300 mm mean diameter with a wall 2 mm thick. Calculate the maximum pressure 

difference allowed between the inside and outside if the stress in the wall must not exceed 150 

MPa. 

 

 SOLUTION 

 

 The solution must be based on the circumferential stress since this is the largest. 

   

  c = pD/2t = 150 MPa 

 

  p = 150 MPa x 2t/D = 150 x 2 x 0.002/0.3 

 

  p = 2 MPa 
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 2. THIN WALLED SPHERE 

 

A sphere will tend to split about a diameter as shown in fig.3 

 
Figure 3 

 

The stress produced in the material is equivalent to the longitudinal stress in the cylinder so 

  
4t

pD
σC  ..................................(2.1) 

 

 

 WORKED EXAMPLE No.2 

 

 Calculate the maximum allowable pressure difference between the inside and outside of a sphere 

50 mm mean diameter with a wall 0.6 mm thick if the maximum allowable stress is 150 MPa. 

 

 SOLUTION 

 

 Using equation 2.1 we have 

  = pD/4t = 150 MPa 

 p = 1.5x10
6
 x 4t/D =1.5x10

6
  x 4 x 0.0006/0.05 = 72 kPa 

 

 

 

 SELF ASSESSMENT EXERCISE No.1 

 

1.  A thin walled cylinder is 80 mm mean diameter with a wall 1 mm thick. Calculate the 

longitudinal and circumferential stresses when the inside pressure is 500 kPa larger than on the 

outside.  (Answers  10 MPa and 20 MPa). 

 

2.  Calculate the wall thickness required for a thin walled cylinder which must withstand a 

pressure difference of 1.5 MPa between the inside and outside. The mean diameter is 200 mm 

and the stress must not exceed 60 MPa.  (Answer  2.5 mm) 

 

3.  Calculate the stress in a thin walled sphere 100 mm mean diameter with a wall 2 mm thick 

when the outside pressure is 2 MPa greater than the inside. (Answer   -25 MPa). 
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3. VOLUME CHANGES 

 

We will now look at how we calculate the changes in volume of thin walled vessels when they are 

pressurised. 

 

CYLINDERS 

 

Consider a small rectangular area which is part of the wall in a thin walled cylinder (figure 4).  

 
Figure 4 

 

There are two direct stresses perpendicular to each other, c and L. From basic stress and strain 

theory (tutorial 1), the corresponding longitudinal strain is : 

  CLL νσσ
E

1
ε   

E is the modulus of elasticity and  is Poisson's ratio. Substituting L= pD/4t and c=pD/2t we 

have 

   )1....(3....................2ν1
4tE

pD

2t

pD
ν

4t

pD

E

1

L

ΔL
εL 








  

   

The circumferential strain may be defined as follows. 

 

  c= change in circumference/original circumference 

 
 

D

ΔD

πD

πDΔDDπ
εC 


  

The circumferential strain is the same as the strain based on diameter, in other words the diametric 

strain. 

 

From basic stress and strain theory, the corresponding circumferential strain is : 

  LCC νσσ
E

1
ε   

Substituting L= pD/4t and c=pD/2t we have 

   )2....(3....................ν2
4tE

pD

4t

pD
ν

2t

pD

E

1

D

ΔD
εε DC 








  

Now we may deduce the change in diameter, length and volume. 

Original cross sectional area of cylinder = A1 = D2/4 

Original length = L1 Original volume =V1 = A1 L1=(D2/4)(L1) 

New cross sectional area = A2 =   (D + D)2/4 

New length = L2 = L + L 

New volume = V2 = A2L2= {(D + D)2/4}(L1 + L) 

Change in volume = V = V2 -V1 

Volumetric strain = v = V/V1 
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


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







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
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 


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


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











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


















 

  

 

Dividing out and clearing brackets and ignoring the product of two small terms, this reduces to 

 )3.3.........(....................2εε
D

ΔD
2

L

ΔL
ε DL

1

V   

If we substitute equation 3.1 and 3.2 into this we find 

   )....(3.4..............................4ν5
4tE

pD
εV    

 

 

 WORKED EXAMPLE No.3 

 

 A cylinder is 150 mm mean diameter and 750 mm long with a wall 2 mm thick. It has an 

internal pressure 0.8 MPa greater than the outside pressure. Calculate the following. 

  i. The circumferential strain. 

  ii. The longitudinal strain. 

  iii. The change in cross sectional area. 

  iv. The change in length. 

  iv. The change in volume. 

 

 Take E = 200 GPa and  = 0.25 

 

 SOLUTION 

 

 c= pD/2t = 30 MPa  L= pD/4t = 15 MPa 

 

  D= D/D = (pD/4tE)(2 - ) = 131.25  

 

 D = 150 x 131.25 x 10-6 = 0.0196 mm D2 = 150.0196 mm 

 

 A1 =  x 1502/4 = 17671.1 mm2 A2 =  x 150.01962/4 = 17676.1 mm2 

 

 Change in area = 4.618 mm2 

 

 L= L/L1 = (pD/4tE)(1 - 2) = 37.5 

 L= 750 x 37.5 x 10-6 = 0.0281 mm 
 

 Original volume = A1L1 = 13 253 600 mm3   

 Final volume = A2L2 = 13 257 600 mm3 

 Change in volume = 4000 mm3 

 Check the last answer from equation 3.4 

 v =(pD/4tE)(5 - 4) = 300 x 10-6 

 Change in volume = V1 x v = 13 253 600 x 300 x 10-6 = 4000 mm3 

 



© D.J.DUNN   8 

 

SPHERES 

 

Consider a small rectangular section of the wall of a thin walled sphere. There are two stresses 

mutually perpendicular similar to fig. 4 but in this case the circumferential stress is the same as the 

longitudinal stress. The longitudinal strain is the same as the circumferential strain so equation 3.3 

becomes 

 v = D + 2D 

 v = 3D ............................(3.5) 

 

The strain in any direction resulting from the two mutually perpendicular equal stresses is 

 

 D= (/E)(1-) 

Hence v = 3(/E)(1-) .................(3.6) 

 

 

 WORKED EXAMPLE No. 4 

 

 A sphere is 120 mm mean diameter with a wall 1 mm thick. The pressure outside is 1 MPa 

more than the pressure inside. Calculate the change in volume. 

 

 Take E = 205 GPa and = 0.26 

 

 SOLUTION 

 

 v = 3(/E)(1-) = -324.87 

 

 (note the sphere shrinks hence the negative sign) 

 

 Original volume = D3/6 = 904778 mm3 

  

 Change in volume = -904778 x 324.87 x 10-6 = -294 mm3 
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 WORKED EXAMPLE No. 5 

 

 In example No.3 the internal pressure is created by pumping water into the cylinder. Allowing 

for the compressibility of the water, deduce the volume of water at the outside pressure 

required to fill and pressurise the cylinder. 

 

 The bulk modulus K for water is 2.1 GPa. 

 

 SOLUTION 

 

 Initial volume of cylinder = V1 = 13 253 600 mm3 = volume of uncompressed water 

 

 Final volume of cylinder = V2 = 13 257 600 mm3 = volume of compressed water. 

 

 If V2 was uncompressed it would have a larger volume V3. 

 

 V3 = V2 + V  (all volumes refer to water). 

 

 From the relationship between pressure and volumetric strain we have 

 

 V = pV3/K = 0.8 x 106 x V3/ 2.1 x 109 = 380.9 x 10-6V3 

 

 V3 = 13 257 600 + 380.9 x 10-6V3 

 

 0.9996V3 = 13 257 600 

 

 V3 = 13 262 700 mm3 

 

 This is the volume required to fill and pressurise the cylinder. The answer is not precise 

because the mean dimensions of the cylinder were used not the inside dimensions. 
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 SELF ASSESSMENT EXERCISE No. 2 

 

1.  A cylinder is 200 mm mean diameter and 1 m long with a wall 2.5 mm thick. It has an inside 

pressure 2 MPa greater than the outside pressure. Calculate the change in diameter and  change 

in volume. 

 Take E = 180 GPa and  = 0.3  

 (Answers  0.075 mm and 26 529 mm3) 

 

2.  A sphere is 50 mm mean diameter with a wall 0.5 mm thick. It has an inside pressure 0.5 MPa 

greater than the outside pressure. Calculate the change in diameter and  change in volume. 

 Take E = 212 GPa and = 0.25  

 (Answers  0.0022 mm and 8.68mm3) 

 

3a. A thin walled cylinder of mean diameter D and length L has a wall thickness of t. It is subjected 

to an internal pressure of p. Show that the change in length  L and change in diameter D are 
 

 L=(pDL/4tE)(1 -2)   and   D =(pD2/4tE)(2 - )  
 

b.  A steel cylinder 2 m long and 0.5 m mean diameter has a wall 8 mm thick. It is filled and 

pressurised with water to a pressure of 3 MPa gauge. The outside is atmosphere.  For steel E= 

210 GPa  and =0.3.  

 For water K = 2.9 GPa. 

 

 Calculate the following. 

 i. The maximum stress. (93.75 MPa) 

 ii. The increase in volume of the cylinder. (333092 mm3) 

 iii. The volume of water at atmospheric pressure required. (392 625 000mm3) 

 

4a. A thin walled sphere of mean diameter D has a wall thickness of t. It is subjected to an internal 

pressure of p. Show that the change in volume V and change in diameter D are 
 

 V =(3pDV/4tE)(1 - )  where V is the initial volume. 

 

b.  A steel sphere 2m mean diameter has a wall 20 mm thick. It is filled and pressurised with water 

so that the stress in steel 200 MPa. The outside is atmosphere.  For steel E= 206 GPa  and   = 
0.3. For water K = 2.1 GPa. 

 

 Calculate the following. 

 

 i. The gauge pressure (8 MPa) 

 

 ii. The  volume water required. (4.213 x 109 mm3) 
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4. THICK CYLINDERS 

 

The difference between a thin cylinder and a thick cylinder is that a thick cylinder has a stress in the 

radial direction as well as a circumferential stress and longitudinal stress. A rule of thumb is that 

radial stress becomes important when the wall thickness exceeds 1/20
th

 of the diameter. 

 
Figure 5 

4.1 LAME'S THEORY 

 

Consider a small section of the wall. 

 

L = Longitudinal stress 

 

R = Radial stress 

 

C = Circumferential stress 

 

 

 

 

 

Figure 6 

 

We have 3 stresses in mutually perpendicular directions, the corresponding strains are 

  

  

  LCRR

RLCC

CRLl

σσνσ
E

1
ε

σσνσ
E

1
ε

σσνσ
E

1
ε







 

Next consider the forces acting on a section of the wall. 
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Figure 7 
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Balance the forces vertically (assuming 1 m of length). 

 

Remember the length of an arc is radius x angle 

The area of the top curved surface is (r + r) x 1 

The area of the bottom curved surface is r x 1 

 

Remember Force is stress x area. 

The vertical force up is (R + R)(r + r)  

The vertical force down is  R r  + 2 C  r sin/2 

 

Remember for small angles the sin is the same as the angle in radians. 

sin/2 =/2  Balancing the forces we have  

  
2

δθ
δr2σδθr σδθδrrδσσ CRRR   

This resolves down to    RC
R σσ

δr

δσ
  

In the limit this becomes    RC
R σσ

dr

dσ
 ...................(4.1) 

Without proof, it can be shown that the longitudinal stress and strain are the same at all radii. 

(The proof of this is a long piece of work and would detract from the present studies if given here). 

 

The strain is given by 

  CCLL σσνσ
E

1
ε   

Since L and  L are constant then it follows that     (R + C) = constant. 

The solution is simplified by making the constant 2a 

 

RC

CR

σ2aσ

2aσσ




  .....................(4.2) 

Substitute (4.2) into (4.1) and 

 

 

 

2C

2R

2
R

2

R
2

R
R

2
R

2

R
R

2

RRR
R

r

b
aσ

r

b
aσ

n.integratio ofconstant  a is b where

bar2ardrσr

2ar
dr

σrd

2rσ
dr

dσr

dr

σrd

shown that becan It 

2rσ2ar
dr

dσr

rearrange andr by  allmultiply 

2σ2aσσ2a
dr

rdσ
















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In order to solve problems, the constants a and b must be found from boundary conditions. 

 

Remember: a boundary condition is a known answer such as knowing what the pressure or stress 

is at a given radius. 

 

When atmospheric pressure acts on one side of the wall, it is best to use gauge pressure in the 

calculations. This makes atmospheric pressure zero and all other pressures are relative to it. 

 

Remember: absolute pressure = gauge pressure + atmospheric pressure. 

 

 

 

 WORKED EXAMPLE No.6 

 

 A hydraulic cylinder is 100 mm internal diameter and 140 mm external diameter. It is 

pressurised internally to 100 MPa gauge. Determine the radial and circumferential stress at the 

inner and outer surfaces. 

 Take E = 205 GPa and  = 0.25 

 

 SOLUTION 

 

 The boundary conditions are  

 

 Inner surface  r = 50 mm R = - 100 MPa (compressive) 

 Outer surface r = 70 mm R =  0 MPa (compressive) 

 

 Substituting into Lame's equation we have 

 R =  - 100 x 106 =  a - b/r2 =  a - b/0.052 

 R =  0  =  a - b/r2 =  a - b/0.072 

 

 Solving simultaneous equations b = 510 kN   a = 104 MPa 

 

 Now solve the circumferential stress.  c = a + b/r2 

 

 Putting r = 0.05  c = 308 MPa 

 Putting r = 0.07  c = 208 MPa 
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5. SOLID SHAFTS AND SLEEVES 

 

In this section we will examine the stress and strain induced when a sleeve fits on a shaft with an 

interference fit. 

 
Figure 8 

When the sleeve is fitted we assume here that a pressure p is exerted all over the surface of contact.  

 

Fits consider the shaft. We will derive the equations as though the shaft was hollow with no 

pressure inside it and then put zero for the inside diameter. 
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Put Ri = 0 and c = -p 
 

The strain in the circumferential direction = c 

     1ν
E

p
 νpp

E

1
νσσ

E

1
ε Rcc   

 1υ
E

pR
ΔR   

R

ΔR
εc   

This is the change in the outer diameter of the shaft.  is Poison’s ratio. 
 



© D.J.DUNN   16 

 

Next consider the sleeve. 
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The strain in the circumferential direction = c 
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This is the change in the inner diameter of the sleeve. 

 

The decrease in radius of the shaft plus the increase in radius of the sleeve must add up to be the 

interference fit  so adding the two R values we get: 
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If the elastic constants are the same for both materials this simplifies to : 
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 WORKED EXAMPLE No.7 

 

 A shaft has a diameter of 30.06 mm and is an interference fit with a sleeve 40 mm outer 

diameter, 30 mm inner diameter and 50 mm long. Calculate the force needed to slide the sleeve 

on the shaft if the coefficient of friction is 0.3. The elastic properties for both parts are the same 

with E = 205 GPa and Poisson’s ratio = 0.25 

 

 Calculate the change in radius of the shaft and sleeve at the inside. 

 

 SOLUTION 

 


























 1

RR

RR
 -2ν

E

pR
δ

2
o

2

2
o

2

  R = 0.03 m   Ro = 0.02   = 0.00003 m 

 





























1
RR

RR
 -2ν

1

R

δE
p

2
o

2

2
o

2
=133.5 MPa 

 The normal force between the two surfaces of contact is N = pA 

 A = 2RL = 2 x 0.015 x 0.05 = 4.712 x 10
-3

 m
2
 

 N = 133.5 x 10
6
 x 4.712 x 10

-3 
=  629 kN 

 Force to overcome friction F = R = 0.3 x = 188.7 kN 
 

 For the shaft 

      m7.326x1010.25
205x10

0.015x 10 x 133.5
  1ν

E

pR
ΔR 6

9

6
  

 For the sleeve at the inside 

 m37.33x10
RR

RR
 -ν

E

Rp
ΔR 6

2
o

2

2
o

2

1

1



























  

 Check by adding  37.33 - 7.326 = 30m the interference fit. 
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 SELF ASSESSMENT EXERCISE No.3 

 

1. A thick cylinder has an outer diameter of 150 mm and an inner diameter of 50 mm. The 

OUTSIDE is pressurised to 200 bar greater than the inside.  

 

 Calculate the following. 

 

  The circumferential stress on the inside layer. (-45 MPa) 

  The circumferential stress on the outside layer. (-25 MPa) 

 

2. A thick cylinder has an outside diameter of 100 mm and an inside diameter of 60 mm. It is 

pressurised until internally until the outer layer has a circumferential stress of 300 MPa.  

 

 Calculate the pressure difference between the inside and outside. (266.6 MPa) 

 

3. A thick cylinder is 100 mm outer diameter and 50 mm inner diameter. It is pressurised to 112 

MPa gauge on the inside. Calculate the following. 

 

  The circumferential stress on the outside layer (74.64 MPa) 

  The circumferential stress on the inside layer (186.67 MPa) 

  The longitudinal stress (37.33 MPa) 

  The circumferential strain in the outside layer (314.9 ) 

  The circumferential strain in the inside layer (1.008 x 10-3) 

  The change in the inner diameter (0.05 mm) 

  The change in the outer diameter (0.031 mm) 

 

 Take E = 205 GPa and  = 0.27 

 

 

4. A shaft has a diameter of 45.08 mm and is an interference fit with a sleeve 60 mm outer 

diameter, 45 mm inner diameter and 80 mm long. Calculate the force needed to slide the sleeve 

on the shaft if the coefficient of friction is 0.25. The elastic properties for both parts are the same 

with E = 200 GPa and Poisson’s ratio = 0.3 

 

 Calculate the change in radius of the shaft and sleeve at the inside. 

 (p =111.2 MPa, F = 236.2 kN, R1=48.77 m, R2 =-8.77 m) 
 

 

 


