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Part I: Kinematics



1. Bodies, configurations, motions, mass, and mass density.

A body is a set of particles. Sometimes in the literature a body B is referred to as a mani-
fold of particles. Particles of a body B will be designated as X (see Fig. 1.1) and may be
identified by any convenient system of labels, such as for example a set of colors. In mechanics
the body is assumed to be smooth and, by assumption, can be put into correspondence with a
domain of Euclidean space. Thus, by assumption, a particle X can be put into a one-to-one
correspondence with the triples of real numbers X;,X,,X3 in a region of Euclidean 3-space £3.
The mapping from the body manifold onto the domain of %3 is assumed to be one-to-one, inver-
tible, and differentiable as many times as desired; and for most purposes two or three times

suffice.

Each part (or subset) § of the body B at each instant of time is assumed to be endowed with
a positive measure M(S), i.e., a real number > 0, called the mass of the part S and the whole body
is assumed to be endowed with a nonnegative measure M(B) called the mass of the body. We
return to a further consideration of mass later in this section.

Bodies are seen only in their configurations, i.e., the regions of Z3 they occupy at each
instant of time t (—oo <t <+o). These configurations should not be confused with the bodies
themselves.

Consider a configuration of the body B at time t in which configuration B occupies a region
R in E3 bounded by a closed surface 0% (Fig. 1.2). Let x be the position vector of the place
occupied by a typical particle X at time t. Since the body can be mapped smoothly onto a

domain of 23, we write

x = x(X;t) . (1.1)

In (1.1), X refers to the particle, t is the time, x [the value of the function i] is the place occu-
pied by the particle X at time t and the mapping function y is assumed to be differentiable as
many times as desired both with respect to X and t. Also, for each t, (1.1) is assumed to be

invertible so that



X.= k@t (1.2)

where the symbol x~! designates the inverse mapping. The mapping (1.1) is called a motion of
the body B. The description of motion in (1.1) is similar to that in particle mechanics and is

traditionally referred to as the material description.

During a motion of the body B, a particle X (by occupying successive points in £°) moves
through space and describes a path C; the equation of this path is parametrically represented by
(1.1). The rate of change of place with time as X traverses Cis called the velocity and is tangent
to the curve C. Similarly, the second rate of change of place with time as X traverses C is the
acceleration. Thus, in the material description of the motion, the velocity v and acceleration a

are defined by

7 0.45 L y(Xb)
V=X=T,3=X—————5t§——. (1.3)
In the above formulae, the particle velocity v is the partial derivative of the function )_( with
respect to t holding X fixed; and, similarly, the particle acceleration a is the second partial
derivative of i with respect to t holding X fixed. Also, the superposed dot, which designates the
material time differentiation, can be utilized in conjunction with any function f and signifies dif-

ferentiation with respect to t holding X fixed.

Reference configuration. Often it is convenient to select one particular configuration and
refer everything concerning the body and its motion to this configuration. The reference
configuration need not necessarily be a configuration that is actually occupied by the body in any
of its motions. In particular, the reference configuration need not be the initial configuration of
the body.

Let kg be a reference configuration of B in which X is the position vector of the place occu-
pied by the particle X (Fig. 1.3). Then, the mapping from X to the place X in the configuration

KR may be written as



tR1

oR R
Body B

Fig. 1.1 Present configuration « at time t.

P Fig. 1.2

Fixed reference configuration «

Fig. 1.3



X = kg (X) (1.4)

which specifies the position vector X occupied by the particle X in the reference configuration
kr. The mapping (1.4) is assumed to be differentiable as many times as desired and invertible.

The inverse mapping is

X = K: X) . (1.5)

Then, the mapping (1.1) at time t from the place x to the particle X may be expressed in terms of

(1.5),1e.,

x = X[, (0 = o (KD (16)

The second of (1.6), which involves the function EKR (with a subscript kg, emphasizes that the

motion described in this manner represents a sequence of mappings of the reference
configuration kg. In the future, however, for simplicity’s sake we omit the subscript kg and

write (1.6), and its inverse as

x = xX0) , X =xlxt (1.7)

with the understanding that X in the argument (1.6) is the position vector of X in the reference
configuration kg Returning to (1.6),, we observe that for each kg a different function iKR
results; and the choice of reference configuration, similarly to the choice of coordinates, is arbi-

trary and is introduced for convenience.

A necessary and sufficient condition for the invertibility of the mappings of (1.7); » is that

the determinant J of the transformation from X to x be nonzero, i.e.,

J = det(%) = det(—aa%j:) £0 . (1.8)
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Description of the motion. There are several methods of describing the motion of a body.
Here, we describe three but note that, because of our smoothness assumptions, they are all
equivalent.

It was noted earlier that the description utilized in (1.1) is the material description. In such
a description one deals with abstract particles X which together with time t are the independent
variables.

A description such as (1.7) in which the position X of X at some time, e.g., t = 0, is used as
a label for the particle X is called the referential description. In the referential description,
which is also known as Lagrangian, the independent variables are X and t. For some purposes,
it is convenient to display and to utilize (1.7) in terms of its rectangular Cartesian coordinates.
Thus, let Ex be constant orthonormal basis vectors associated with the reference configuration
and similarly denote by ey constant orthonormal basis vectors associated with the present

configuration at time t. Then, the positions X and x referred to Ex and ey, respectively, are

X = XKEK , X = Xk €k (19)

where Xy are the rectangular Cartesian coordinates of the position X and similarly x; are the
rectangular Cartesian coordinates of the position x. Referred to the basis ey, the component

form of (1.7); can be displayed as
Xk = xXkot) (1.10)

where without loss in generality (since Eg are constant orthonormal basis) we have also replaced
the argument X by its components Xg. In the future we often display the various formulae both

in their "coordinate-free" forms, as well as their component forms.

The particle velocity and acceleration in a material description of motion are given, respec-
tively, by (1.3); 2. The corresponding expressions for velocity and acceleration in the referential

description (1.7) will have the same forms as (1.3); , but with the argument X replaced by X:

. b . P
V=x= 73’té(x,t) , a=%= T}(x,o . (1.11)
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So far we have introduced two descriptions of motion. The third is called the spatial
description in which attention is centered in the present configuration, i.e., the region of space
occupied by the body at the present time t. In the spatial description, which is also known as

Eulerian, the independent variables are the place x and the time t. To elaborate further, consider

an entity f defined by
f = fX¢) . (1.12)

Since (1.1) is invertible in the form (1.2), the function i’(X,t) can be expressed as a different

function of x.t, i.e.,

Xt = fixix,0.0 = fixt) . (1.13)

Moreover, the function f is unique. It is clear that with the use of the transformation of the form
(1.13), the velocity and acceleration in (1.3); » can be expressed in terms of different functions of

X,t:

v =vXt) = ¥(x,t) = ke , a=aXt) = ax,t) = dgeg . (1.14)

In the above spatial description, the spatial form f(x,t) on the right-hand side of (1.13) was
obtained from a representation (1.12) in which f is a function of particle X and t. Analogous

results hold if we start with f = f‘(X,t) and then use (1.7);, to obtain

f=fXt) = fixyt) . (1.15)
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Material derivative. Consider again a function such as f(X.t) in (1.12). The partial
derivative of this function with respect to t holding the variable X fixed, denoted by f, is called
the material derivative of f. But f, with the use of (1.13),, can also be expressed as a different

function of x,t. Thus, using the chain rule for differentiation, we have

'GTX=75£ 2t t o

foof of .oy . of (1.16)

where on the left-hand side of the above we have temporarily emphasized that the variable X is
held fixed when calculating the partial derivative of f with respect to t. With the use of the first

of (1.3);, we may rewrite (1.16); as

c_ofxt, _of L o o, _of . of

f—%llx——&'l‘ﬁ V—E-}-Vkﬁk— (1.17)
which is the material derivative of f(x,t). The results of the type (1.15) and (1.17) are applicable
to any scalar-valued, vector-valued or tensor-valued field. In particular, consider the referential
form of the velocity vector v which by (1.11); and transformation of the type (1.15) is

v = ¥(X;t) = ¥(x,t) . (1.18)

Then, the acceleration or the material derivative of v where these are regarded as functions of x,t

arc

v = ax,t) . (1.19)

2

— v = OV
N =

Material curve, material surface and material volume. Let a body B with material
points (or particles) X in a fixed reference configuration kg occupy a region K in £3 bounded
by a closed surface 0Rg. Any subset Sg of Bin £ will be designated by 7z (= K r) bounded
by a closed boundary surface 0%;. Because of the nature of the smoothness assumption

imposed on the mapping (1.7); from the reference configuration kg to the current configuration x
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of Bat time t, all curves, surfaces and volumes in xp are carried by the motion ¥ into curves, sur-
faces and volumes in the configuration k. Thus, the region R g with the closed boundary surface
OR R is mapped into a region K with corresponding closed boundary surface 6% in k. More-
over, the parts Pz (€ K Rr) bounded by 0% is mapped into a part (< R) bounded by a closed
surface 02. The part 2 is occupied by the same material points (or particles) as those which

occupied PR and such a region or volume is called a material volume.

A surface in the reference configuration ky, is defined by equations of the form

FX) =0 or X = X(UUp) , (1.20)

where U;,U, are parametric variables on the surface. With the use of (1.7),, the surface (1.20)

can be mapped into a corresponding surface

f(x,t) = F(x~'(x,t)) = 0 or x(U;,Uyt) = x[X(U,Uy),t] (1.21)

in the configuration « at time t. The surface (1.21) is called a material surface, since its material

points (or particles) are the same as those of the surface (1.20).

A curve in the reference configuration may be regarded as the intersection of two surfaces

of the form

FX)=0 , GX)=0, (1.22)
and is defined by

X = X, (1.23)

where U is a parameter and can be identified with the arc length. The intersection of the surfaces

(1.22) can be mapped into a curve in the configuration k which is the intersection of the surfaces

fix,) = Fo'(x,0) = 0, gxt = G'(x,0) = 0 (1.24)



or
x(U,t) = x[X(U),t] . (1.25)

The curve (1.25) is called a material curve, since its material points (particles) are the same as

those of the curve (1.23).

Lagrange’s criterion for a material surface. A surface f(x,t) = 0 is said to be material if

and only if the material derivative of f vanishes, i.e.,
f=gt£+%~v=o. (1.26)
First we write f(x,t) = F(X,t) with the use of (1.7); and suppose that f(x,t) is material.

Then, F(X,t) must be independent of t and hence F = 0and this implies that f=0.

Next, suppose that f = 0. Then, it follows that F = 0 and this implies that F must be
independent of t and a function of X only so that F(X) = 0 and after using (1.7), we have the
result that F(x~1(x,t)) = f(x,t) = 0 is material.

In a similar manner, we may establish that the intersection of surfaces f(x,t) = 0 and

g(x,t) = 0 is a material curve if
f=H  Hov=0, =B+ %L.v=0. (1.27)

Mass density. Before closing this section, consider again a configuration k of the body B
at time t in which B occupies a region of Z8 & bounded by a closed surface 0% and recall that a
part (or a subset) of B will be denoted by S. The part S in a neighborhood of the place x in k
occupies a region of space P (< ®) bounded by a closed surface 02. We introduce explicitly the
mass M(S) of the part and the mass M;(B) of the whole body at time t. These measures are non-

negative, and at this stage of the development, may be functions of t. Assuming that the measure



M(S) is absolutely continuous, then the limit

M(S)
v

p = lim (1.28)

exists, where v = v(P) is the volume of the region of space 2. The scalar field p = p(x,t) is
called the mass density of the body in the configuration at time t. The mass density is nonnega-
tive and is a function of both x and t. The mass of the part § of the body and the mass of the

whole body, both at time t, can be expressed in terms of the mass density p:

M) =[ pdv , M®B =[ pdv, (1.29)
P R

where the subscript t attached to § and B emphasizes that the lefi-hand sides of (1.29); , refer to
the masses of § and B in the configuration k at time t and dv is an element of volume in this
configuration, the regions of integration being over Pand K in £. Similarly, we define the mass

density Pr in a reference configuration and write

M(S) = prdVR , MR(B) = [ prdVg, (1.30)
PR KRR
where dVR denotes an element of volume in the reference configuration and Pz, R (Pr < RR)

are the regions of space occupied by the part and the whole body in the reference configuration.
If the reference configuration is identified with the initial configuration at time t,, then instead of

(1.30) we write

MS) = [ podV , M(B) =[ podV, (1.31)
Po Ro

where p, and dV are, respectively, the mass density and the volume element in the initial
configuration while 7, and R, (%, < R, are the regions of space occupied, respectively, by the

part and the whole body in the initial configuation.

It should be emphasized that, at this stage in our development, the mass of a part of the

body and that of the whole body depend on the particular configuration occupied by the body.
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Let a two-dimensional motion of a body be specified in the form

x; = Xy(1 +e) |, xp = Xs(1 +e‘2at) s X3 = X3, (132)

where a is a positive constantand 0 < t < oo .

(a)
(b)
(©
(d)
(e)
®

Solution:

(@)

Calculate the Jacobian J of the above transformation. Is it positive?

Obtain the inverse motion.

Calculate the referential form of the velocity components.

Express the velocity components in (c) in spatial form.

Calculate the spatial form of the components of acceleration from the results in (d).

Check the results in (e) by calculating first the referential form of the components of
acceleration and then using the inverse results in (b) to obtain the spatial form of the

acceleration components.

Recalling (1.8), we first calculate the matrix (—aaXX—;), ie.,

1 + edt 0 0
ax.
[ax-] = | 0 l+e2at 0 . (1.33)

0 0 1




(b)

(©)

(d)

(e)

= 1., =

Then,

J = (1+ea) (1 +e2at) . (1.34)

The inverse transformation of (1.32) is simply obtained by solving for X, in terms of

x;and t, i.e.,

X =xi(1+et)yl | X, = xp(1+e 28yl | X3 =x3. (1.35)

Vi X =aXj et | vy =% =-2aXp g2at v3=0. (1.36)

By substitution of the results (1.35) into (1.36) we arrive at the spatial form of the

velocity components:
vi = axj(l+e)let | v, =-2axy(l+e2a)yle2at = vy =0. (137
Recalling (1.19) we have

_ 0vg ovy ov) ovy
al—?f—'f'mVl"l'Evz'l‘EV:;

—ax (1 +e®)2(@ae?) + a2x;(1 +e2t)leat + a2 x (1 + edt)2e2at

N a2 X] eat
= (1+—eat) s (1.38)

with similar results for other components of a;.
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(f) The referential form of the acceleration components calculated from (1.36) are

a; = il = a2 Xl est s @ = 4a2 X2 g—2at s 43 = 0. (139)

Next, with the help of (1.35), the components (1.39) can be expressed in their

corresponding spatial form:

a? xy et 4a? x, e 2at
a) = m , ay = (I-FTM) , a3 = 0. (140)

2. Deformation gradient. Measures of strain. Rotation and stretch.

Henceforth we identify the particle (material point) X of the body B by its position
vector X in a fixed reference configuration, which (for convenience) we take to be coin-
cident with the initial configuration x,. The deformation gradient (also called displacement

gradient) F relative to the reference position is defined by

F=F(x,t)=ﬁ’%§—’t) , J=detF =0 . 2.1)

The components of F are designated by Fjs or sometimes written as x; o, with a comma

designating partial differentiation. They are given by

oyi(Xg,t
P = 2488 22)

and may be regarded as the elements of a 3x3 square matrix.

At a fixed time t, line elements dx are related to line elements dX in x, by

dx = FdX or dx; = xj5dXy . (2.3)

The deformation gradient F in (2.3) describes the local deformation of a particle (material
point) whose position vector is X in k,. In other words, (2.3) is a linear transformation of a
small neighborhood of X from the reference configuration x, into the current configuration

K at time t.
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Let the magnitudes of dX and dx be denoted by dS and ds, respectively; and let M and

m be the unit vectors in the directions of dX and dx, respectively. Then,

dX=MdS , M-M=1,

(2.4)
dx =mds , m-m=1,
or in component form
dXa = MadS , MpaMp, =1,
(2.5)

dx; =myds , mim; =1 .

Measures of strain.

In general, the material line element dX undergoes both stretch and rotation. The ratio

ds/dS , denoted by A, is called the stretch of the line element, i.e.,

=45 (2.6)

It then follows from (2.3)-(2.5) that

mds = dx = FdX = FMdS ,

2.7
or mjds = dx; = x;5dXs = x4 M dS .
Next, using (2.6), from (2.7) we have
Am = FM or Am; = x4 My . (2.8)

By taking the scalar product of each side of (2.8) with itself we obtain

AM=FM-FM=M-CM, (2.9)
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where in writing (2.9); we have also defined the tensor C by
C =F'F. (2.10)

The component forms of the equations (2.9)-(2.10) are:

Az = CAB MA MB " (293)

and

CAB = XjAXiB - (2.10a)

The symmetric tensor C (with components Cap) is called the right Cauchy-Green tensor.

Clearly, for a material line element which coincides with dX in the reference
configuration «,, the value of the stretch A in the direction M can be calculated from (2.9)
once C is known. Alternatively, A can be calculated in terms of the deformed line element

dx in the current configuration k. To see this, since F is invertible, we rewrite (2.3) as

Fldx = dX or Xu;dx = dXa , @2.11)

where the inverse function F-! using (1.7), is defined by

=1
oy,

By-!
Fl = —%‘x_ or Xaj = —0.% : (2.12)
Then, from (2.4), (2.5), (2.11) and (2.12) we have

MdS =dX = Fldx = Flmds ,
(2.13)
or MA ds = dXA = XA,i dXi = XA,i m; ds :

which with the use of (2.6) can be written in the form

MM =F'm or MMy = Xp;m; . (2.149)
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The result (2.14) can also be obtained immediately by inverting (2.8). By taking the scalar

product of each side of (2.14) with itself we obtain

A2=F'm-F'm=m FHF'm=m-B'm, (2.15)

where in writing (2.15)3; we have also defined the tensor B by

B =FFT . (2.16)

The component forms of equations (2.15)-(2.16) are:
A2 =cimm, , (2.15a)
-1
cj = b, = XaiXaj » bj=Xiaxa, (2.16a)

where the notation c;; designates the components of the inverse of the tensor B. The sym-
metric tensor B whose components are given in (2.16a) is called the left Cauchy-Green ten-
sor. The tensors C and B represent, respectively, the referential (or Lagrangian) and the
spatial (or Eulerian) descriptions of strain. When the motion is rigid, both tensors become

identity tensors, i.e., C = B = I, where I is the identity tensor.

For some purposes, it is convenient to employ relative measures of strain such that

these measures vanish when the motion is rigid. Recalling (2.9) and (2.15) we may write

A2 -1 =M:-(C-DM = (Cap—05a)Ma Mg

(2.17)
-1
1 -22=m-I-BH)m = (Sij—bij)m,-mj
or equivalently,
A2 —1=2M-EM = 2EA\g My M3 ,
(2.18)

1 =22 =2m-Em = 2¢;mm; ,
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where
E=2(C-D or Exp= +(Ca—5sp) . (2.19)
E=1(I-B) or e=~+(-cp. (2.20)

The relative measure E defined by (2.19) is known as the relative Lagrangian strain, and the

corresponding relative spatial measure of strain E is defined by (2.20).

Rotation and stretch.

The deformation gradient F in (2.3) describes the local deformation of a material line ele-
ment at X from the reference configuration x, to the current configuration «; it involves, in
general, both rotation and stretch. Now, since by (1.8) the deformation gradient F is non-

singular, using the polar decomposition theorem it may be expressed in the polar forms

F=RU=VR or XjA = RiBUBA = Vl.l R_]A ) (221)

where U and V are positive definite symmetric tensors called, respectively, the right and left

stretch tensors and R is the proper orthogonal tensor satisfying

RRT=RTR=1 detR=1, (2.22)

or in component form

RiaRjp = 6o or RjaRjp = &5 . (2.22a)

The effect of (2.21) is to replace the linear transformation (2.3) by two linear transforma-

tions: Either by

dX' = UdX and dx = RdX' or dXp = UgydX, and dx; = RigdXp , (2.23)
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or by

dx' = RdX and dx = Vdx' or dxj = RjadX, and dx; = Vjdxj .

(2.24)

Associated with each of the stretch tensors U, V are three positive principal values

(eigenvalues) and three orthogonal principal directions (eigenvectors). These will be dis-

cussed later. Here, it should be emphasized that, in general, F, R, U, V are all functions of

X and t and they can vary from one material point to another during motion. In the

remainder of this section, we provide physical interpretations for the decompositions (2.23)

and (2.24).

(1) Stretch followed by pure rotation. In this case, let the deformation of dX into dX’

involve only pure stretch and the deformation from dX' into dx be one of pure rotation. By

(2.21); and (2.23), as well as (2.9)-(2.10), we have

dx-dx = RdX'-RdX' = dX'-dX' ,

or
dx; dx; = Rja Rjp dX dXp = 8,p dXa dXp = dX, dXj ,
and
C = FTF = (RU)T(RU) =02,
or

CaB = XiaXiB = Rik Uxa Rir Urg = 8k Uga Urg = Uga Uks ,

A2 = Uga Uxkg MaA Mp = Cag Mp M3 .

(2.252)

(2.25b)

(2.26)

(2.27a)

(2.27b)

According to (2.25), the length of the line element dX' is the same as the length of dx so

that all the stretching is represented by U in (2.26). However, line elements are generally
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also rotated by the action of U. The part of the deformation described by R is a pure rota-
tion.
(ii) Pure rotation followed by stretch. In this case, let the deformation of dX into dx’

be one of pure rotation and the deformation from dx’ to dx involve only stretch and rotation.

By (2.21) and (2.24), as well as (2.15)-(2.16), we have

dx'-dx' = RdX-RdX = RTRdX-dX = dX-dX , (2.28)
or

dxi dx{ = Rjs Rip dXs dXp = 8pp dXa dXp = dX, dXu (2.29)
and

B=FF = (VR)(VR)T = V2, (2.30a)

117 —m-B'm, (2.30b)
or

bjj = XjaXja = VirRea VisRsa = Vi Vi (2.31a)

A2 = (B-);mym, . (2.31b)

According to (2.28), the length of the line element dx’ is the same as the length of dX so

that the deformation described by R is one of pure rotation.

Keeping in mind the decomposition (2.21), it is evident from (2.26) and (2.30a) that
U = (FTF)”2and V = (F FT)” involve the square root operation which often is difficult to
execute and this is the main reason for the choice of U2 = C and V2 = B as the strain ten-
sors. Moreover, since U? is symmetric positive definite, it possesses a unique symmetric

positive definite square root; a parallel remark applies to the square root of V2. In this
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regard the expressions for the square root of the stretch A and its inverse, in the forms (2.9)

and (2.15), are especially noteworthy.
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Secs. 3 & 4. Further developments of kinematical results.
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5. Velocity gradient. Rate of deformation. Vorticity.

Consider the spatial (Eulerian) form of the particle velocity in the form given by

(1.14), v = ¥(x,t) and define the spatial velocity gradient tensor by

L = grad ¥(x,t) (5.1
or tensor product
= 5 O (5.2)

=vije®e¢ , Vij= =—,
X X

where v;; are the components of L referred to the orthonormal basis €; and in recording
(5.2) we have used the same symbol for the function v and its value. The tensor L can be
uniquely decomposed into its symmetric part D and its skew-symmetric part W (see Appen-
dix L, Sect. 8) as follows:

L=D+W, (5.3)
where
D - %(L+LT) —dje®e¢ , W= %(L—LT) = wij e ®¢ . (5.4)

The corresponding component forms of (5.3) and (5.4) are:

vij = dj + wij , (5.3a)
where
o Lo, oo b e o = il e - A
dj = > (vig+vi)) = dji , wij = 5(Vig— Vi) = — Wji - (5.4a)

The tensor D with components d;; is called the rate of deformation tensor and W with com-
ponents w;; is called the vorticity or the spin tensor.
There is a one-to-one correspondence between a skew tensor and an axial vector (see

Appendix L, Sect. 12). The axial vector w which corresponds to the skew vorticity tensor

W in (5.3) or (5.3a) is defined by

Wz =wxz or w=%curlv (3.5)
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for every vector z. Referred to the basis e;, w reads as

W = W€ (5.6)
and the corresponding component forms of (5.5); ; are:

Wij = —&jjk Wk = &k Wk , Wi = %— Eijk Wij = %— Eijk Vkj > (5.52)

where & stand for the components of the permutation symbol. Motion in which w = 0 is
called irrotational motion. It is usual in some books to identify curl v (instead of % curl v
in (5.5),) as vorticity and denote it by w = curl v.

The foregoing results have been obtained starting from (5.1), where v = v(x,t).
Alternatively, we may begin by recalling the referential (Lagrangian) form of the particle

velocity in the form given by (1.14);, where v = v(X,t). Then, the material derivative of

the deformation gradient (2.1) is

F=LF, (5.7)

or in component form

XiA = XiA = ViA = Vik XkA - (5.7a)

Additional useful results may be obtained from (5.7) or (5.7a). Thus, the material deriva-

tive of the Jacobian of transformation (1.8) is

J=detF = Ju(LFF!) = JtrL
= TtrD = Jvig = Jdi (5.8)
or
J = JXA,i Vik Xk, A = JSik Vik = JVk’k . (583)

A motion which is volume-preserving, i.e., a motion corresponding to which the volume

occupied by any material region remains unchanged, is called isochoric. For an isochoric



33 -
motion,
J=1, J=0=>trD=dg =divy = v = 0 . (5.9)
Next, consider the material derivative of the tensor C defined by (2.10):
C=FF =F'F+FF = F(LT+L)F = 2FDF , (5.10)

or in component form

CaB = XjAX{B = XjAXiB + XjAXiB

Vik Xk,A Xi,B t+ Vik Xk,B Xj,A

(Vix + Vi)Xk A XiB = 2dik Xk A XiB (5.10a)

In order to discuss a physical interpretation of the tensors D and W (or equivalently
the axial vector w), we take the material derivative of (2.8) with respect to t and make use

of (5.7) to obtain

»m=Aim+Am=FM=LFM=ALm, (5.11)

or in component form

m = )Lmi 1 kl’i‘li = Xi,A‘MA = Vik Xk,A MA = }\'Vi,k my . (5.11a)

The scalar product of (5.11) with the unit vector m, after also using the results m - m = 1,

m-m = 0, yields

%=m=Lm-m=(D+W)-m®m=D-m®m, (5.12)

or



=94

—% = m = Vikmjmg = (dik + wik)mi my = dik m; my . (5.128.)

It follows from (5.12) that the rate of deformation D determines the material time derivative
of the logarithmic stretch for a material line element having the direction m in the current

cofiguration k. Further, using (5.12), the result (5.11), may be rewritten as

li1=Lm—-)im=Wm+[D—(%)I]m, (5.13)

or from (5.11a)
o o e e en ks
ml--vumj—(-x)ml—wumJ +[du—(—x)80]m]. (5.13a)

Now, let m be a principal direction of the eigenvectors associated with the rate of deforma-

tion tensor D. Then,

Dm=ym or djymj=ym (5.14)
where the associated scalar eigenvalue y is

y=Dm= djjmjm = % (by (5.12a)) (5.15)
where we have also used (5.12). It follows from (5.14) and (5.15) that

Dm=-}.”xm or dijmj=-jx“-mi. (5.16)

Moreover, from combination of (5.13) and (5.16) we deduce that

m=Wm=wxm or m=Wmj= gwgm; . (5.17)

Thus, the material time derivative of a unit vector m (which represents the direction of a
material line in x) in a principal direction of D is determined by (5.17). In other words, the
axial vector w (or the vorticity) is the angular velocity of the line element which is parallel

to a principal direction.
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(For further results, see the Supplement to Part I, Section 5.)
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6. Superposed rigid body motions.

A rigid motion is one that preserves relative distance. In this section, we examine the
effect of such a motion on the various kinematic measures introduced in preceding sections.
More specifically, we consider here motions which differ from a prescribed motion, such as
(1.7)1, only by superposed rigid body motions of the whole body, i.e., motions which in
addition to a prescribed motion involve purely rigid motions of the body. For later refer-

ence, we recall here the motion defined in Eq. (1.7);, namely
x=x(X,t) .

Consider a material point (or particle) of the body, which in the present configuration
at time t occupies the place x as specified by (1.7);. Suppose that under a superposed rigid
body motion, the particle which is at x at time t moves to a place x* at time tt =t + a, a
being a constant. In what follows for all quantities associated with the superposed motion
we use the same symbols as those associated with the motion (1.7); to which we also attach

a plus "+" sign. Thus, we introduce a vector function x* and write
xt=x" (X, )=t (X, 1) . 6.1)
It is clear that the difference between the two functions )2* and x* is due to the presence of

the constant a in the argument of the former.

Similarly, consider another material point of the body which in the present

configuration at time t occupies the place y specified by
y=x(,1) . (6.2)

Suppose that under the same superposed rigid body motion, the particle which is at y at

time t moves to a place y* at time t*. Then, corresponding to (6.1), we write

yr=ot (Y, ) =1 (Y, 1) (6.3)

Recalling the inverse relationship X = x~!(x, t) and the analogous result for Y = x~\(y, 1),

the function x* on the right-hand sides (6.1) and (6.3) may be expressed as different
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functions of x, t and y, t, respectively, i.e.,
=g XK O =g . ¥ =200, D=0'F.1 . (6.4)

During the superposed rigid body motions of the whole body, the magnitude of the relative
displacement g_(f(x, t) - i*(y, t) must remain unaltered for all pairs of material points X, Y in

the body and for all t in some finite time interval [t, t;]. Hence,

[xH(x, ) — x* (¥, O] - [, ) — 17y, D] = (x = y) - (x—y), (6.5)

or

x -y x-y)=x-y x-y)
for all x, y in the region & occupied by the body at time t.

Since x, y are independent, we may differentiate (6.5) successively with respect to x

and y to obtain the following differential equation for x*:

oxtx 1) | 1| oxy, O
CCTH

where X,y are any points in ® and t is any time in the interval [t}, t;]. Since the tensor

65(—+(y, t)/0y is invertible, (6.6) can be written in the alternative form

e T S -1
{87( (x,t)] =[6x (y,t)} ~ Q) ©67)

for all x,y — ®and t in [t; t;]. Thus, each side of the equation (6.7) is a tensor function of

t, say QT(t), and we may set

Ea(xx,_t) =Q(t)forx € R . (6.8)

Yy, t
Therefore we also have —xa(;,’—) = Q(t). From (6.6) or (6.7), we conclude that

Q'Q=1I, detQ=%1, (6.9)
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and hence Q is an orthogonal tensor. The motion under consideration must include the par-
ticular case 7_(+(x, t) = x and for this particular case Q = I and det Q = +1. Since the motions
are continuous, we must always have

detQ=1 (6.10)
and therefore Q(t) is a proper orthogonal tensor.

The differential equation (6.8) may be integrated to yield
(%, 1) = a() + Q)X ©.11)

where a(t) is a vector function of time. The last result is a general solution of (6.5) for )_(+(x,

t). For later convenience, we put

a(t) = c*(t*) — Q(t)e(t) , (6.12)

where ¢*, ¢ are vector functions of t* and t, respectively. With the use of (6.12), the (6.11)

can be expressed in the form

xt=c"+Q(x-c¢), (6.13)
where
QTQ=QQT=I, detQ=1. (6.14)

The transformation (6.13) is a rigid transformation since it is distance preserving, i.e.,

Ix* -y 2=(x"-y") x*-y)=Q(x~-y) Qx-y)
=(x-y) [QTQ(x -y)]
=(x-y) - Ix-y)
=(x-y) x-y)=|x-y|?. (6.15)

The transformation (6.13) also preserves the angle between any two nonzero vectors X —y

and x — z since

xt-y*  xt-z*

|x*—y*|  [x*-z*]

4%&11%2&%21
x—-y]| X—-Z

cosOt =
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_ (x-y) [QTQ(x-12)]

[x-yl| [x-z]

:T(_llizyl -H=cose . (6.16)

where z is any place in the configuration occupied by the body at time t which moves to z*

at time t* as a consequence of the rigid body motion. Since (6.13) is both length and angle
preserving, it follows that the element of length, element of area and element of volume all

remain unaltered under superposed rigid body motions.

The component forms of the various results between (6.5) and (6.10) proceed as fol-
lows. First, the component form of (6.5) is

[t % ) = 25 DI 0 = %703 O] = (% = ¥ = i) - (6.52)
To record the results (6.6) in component form, we differentiate (6.5a) successively with

respect to X, and y, and obtain

oy x:t) — =
%J—) i (x5, ©) = %i"(¥j> O] = Oim(Xi — ¥)
and
it ) il D) _
o A G (6.62)
Next, multiply (6.6a) by ____G_y_n_ and use the chain rule for differentiation, i.e.,
k(O
WD O _s
(== i 8]1( >
ayn 5%1?(}’], t)
to deduce
—
an (xy t) - GYm ( 673)

M oyt
Since the left-hand side of (6.7a) is independent of y; and the right-hand side is independent

of x;, each side must be a function of time only and we have
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Integration of the differential equation (6.8a) yields

Xt = X (%5, ) = ax(t) + Qen(®Xim - (6.11a)
Since x; is any point, we must also conclude from (6.11a) that

v = X5 ) = A0 + Quem(®)ym

and hence

ot (yi, t
R D = Quutt) -

Substitution of the last result and (6.8a) into (6.6a) results in the component for of
Qim()Qxkn(t) = Smn - (6.9a)

Also, for the convenience of the reader, we also record here the component forms of most

of the equations given above. Thus, for example, the component form of (6.1) is
Xt = 4t Xa, t9) = % Xash) - (6.1a)

Similarly, we identify the component form of (6.2), (6.3), etc., as

Vi=%Ya 0, (6.2a)
W =1tV a =2 Va 0 , (6.32)
xit = it (Xa, 0= %3, ) 5 ¥ =07 (Va0 0= %05 1) (6.4a)
[ (x5, ©) — 21 DI O — %6 (33 0] = (K — Y& = i) (6.5a)

aii+(xjs t) aiﬁ(}'j’ t) =&

OXm OYn s

(6.6a)

éﬁd(r,:&tl = Qik(®) , (6.8a)

Qim(MQin(t) = dmn » (6.9a)
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1% 1) = ai(t) + Qul(xc

3i(t) = c(t") — QuDew(®)

xit = cit + Qji(x; — ¢j)

Qi O = B = Ot B

(xit =yt = yi") = Qii(xj — ¥pQik(Xk — yx)

= O(%j — ¥(Xk — i) = (X — Y& — ¥j) »

|x* —y*| [x*—z*| cos®* = (xi" - yi")(xi* - z{")
= Qim(Xm = Ym)Qin(Xn — Zn)
= Omn(Xm = Ym)(Xn — Zn)
= (Xm ~ Ym)(Xm — Zm)

=|x-y| |x—2z| cosO .

Recall

xt =X, t) = X, ) = (%, ©)

or

x*+ = 1 H(x, tH) = a(t) + Q(H)x .

Then,
o dxt oxrX th)
et
_oxtXt) dt
ot art
_ Xt
=K1
Therefore

vi=xt= a%(a“) +Q(t)x)

(6.11a)

(6.12a)

(6.13a)

(6.14a)

(6.152)

(6.172)

(6.11)

(6.18)
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= §F@® + QNS
= a(t) + Q()x + Q(H)x
= a(t) + Q(O)x + Q) . (6.19)
Let
Q (1) = QMQT() . (6.20)
Then
QQ=QQTQ=Q. (6.21)

But, from (6.9) QT Q =L, so that

Q"HQM + QTMHQM =0 ,

[ (HQMV]TQ(M + QT = O ,

QTMHQTMQM + QTHMQM) =0 ,

QT +Qt) =0
or

QT(t) = -Qt) . (6.22)
Since Q (t) is skew-symmetric, it posseses an axial vector

®; = -71- gijk jk (6.23)
or

Qik = —&jkj ®; -

Alternatively, since Q is skew-symmetric, there exists a vector-valued function ® such that

for any vector ¢,
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QV=0oxV .
Returing to (6.19), we may write

v=a+QQx+Qv .

(6.24)

(6.25)

So far we have been discussing superposed rigid body motions. In order to relate our

results to the more familiar equations of rigid body dynamics, let us now consider a rigid

motion defined by

x=X,

x* = a(t) + Q()x=a(t) + Q)X .

The equation (6.27); may be solved for x in the form
x = QT()(x* - a(t)) .
Then
vt =a(t) + Q(O)x
=a(t) + Q QM[QT(M)(x* —a(1))]
=a(t) + Q (t)[x* — a(t)]

=a(t) + @(t) x [x* —a(t)] .

Thus @(t) is recognized to be the angular velocity of the body.

The component form of the foregoing equations are listed below:

xit = aj(t) + Q;i(t)x; ,
Vit = X" = ai(t) + Qij(t)x; + Qii(V)%;
Qi(t) = Qim(HQm(t)

Qi Qir= QimQumQur= Qir »

(6.26)

(6.27)

(6.28)

(6.29)

(6.11a)

(6.192)

(6.20a)

(6.21a)
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Recalling

Qi[Qj[+ Qi[Qj[= 0,

we obtain
Q;i(t) = —Qi(V)
QinVm = —€imp Wp Vi = €ipm Op Vi
Vit = 8; + Qi Qunn Xn + Qim Vi »
xi" = aj(t) + Qim Xm »
Qjj xi* = Qj 3 + Qi Qim Xm
Qij(xi* — 8)) = Ojm Xm =X; ,
vit=a; + Qij(xj+ - aj)

= a; + gjjk Oj(XF —ay) -

(6.22a)

(6.24a)

(6.25a)

(6.27a)

(6.28a)

(6.29a)

We return now to the more general considerations of superposed rigid body motions.

From (6.25) and (6.11), it follows that

vi=a+QQx+Qv
=a+QQ[QT(x*-2)] + Qv

=a+Q(x*-a)+Qv ,
or in component form
Vi+ = éi S Qij[xj+ = aj] + QijVj .

Then,

(6.30)

(6.30a)
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N _ o 0N, . 0% O
R T

ov:
= 0 8jm + Qi g 5 [Qu(x ~ 2(0)]
ov; . Oxj
=Qim + Qij'&nLanjxlT
m
ov:
= Qim + Qij‘&inn Sim

5V-
= + Qij‘ﬁian

ov
= Qim + Qi Qun - » (6.31a)
or in direct notation

X -0+QQQr. (6.31)

It follows from (6.31) and the results of section 5 that

D:=QDQ",
WH=QWQT+Q , (6.32)

or, in indicial notation,

dif = Qim Qjn dmn »
Wi = Qim Qjn Wmn + €2jj - (6.32a)

In particular, suppose that the body in its superposed motion is at time t passing through the

configuration k with angular velocity €2, so that
Q=1,Q=0Q=0. (6.33)
Then (6.32)

D*=D , Wr=W+Q . (6.34)
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7. Infinitesimal deformation and infinitesimal strain measures.
We recall from section 1 that a motion of the body is defined by
X= X(X, t) or Xj= Xi(XA, t) . (71)

The deformation function ¥ in (7.1) may be written in terms of the relative displacement u

(see section 4), i.e.,
x=X+uX,t) or y;=38ja Xa +ui(Xa, t) . (7.2)

We further recall the relative strain measures

E=2(C-1) or Eap=5(Ca— 84p) » (7.3)
and

e= %(I —¢) or g;= %—(Sij - Gjj) » (7.4)
where

C=FTF or Cap=Fis Fip (7.5)
and

¢c=(F)TF-1=(FFT) 1 =B or ¢;j=Fa Fa| . (7.6)

Also, the relative displacement gradient is defined by
H=F-1I or ui,A=FiA—81A . (7.7)

In order to obtain infinitesimal kinematical results from those of the finite theory dis-

cussed in sections 1-5, we introduce a measure of smallness by a nonnegative function
e =¢g(t) =max{_  su u K=1,2,3), 7.8
O =mgx{gsup Nuxl} ( ) (7.8)

where sup stands for the supremum (or the least upper bound) of a nonempty bounded set of
real numbers. If f(ug) is any scalar-, vector-, or tensor-valued function of

ug = {u;,uy us} defined in a neighborhood of ux = 0 (K = 1, 2, 3) and satisfying the
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condition that there exists a nonnegative real constant C such that | fug)| <Ce"as e — 0,

then we write f = 0(e") as € — 0. Thus, in particular, the components of u g referred to

either e; or E, are of O(¢) as € — 0, i.e.,

uja=0(c) and ugp=0(¢) as e >0 .

(7.9)

The components E 5 of the relative strain measure E in (7.3) can also be expressed in

terms of relative displacement gradients (7.9), in the form

1
Epp=5(uap+upa+ Uy AUMB) -

(7.10)

Clearly, if terms of 0(g2) as € — 0 can be neglected, we can write (7.10) approximately as

By = —21—(uA,B +upa)=0(c) as €0 .
Next, consider the expression

Oup
Fia(da; — 5% 98)

and substitute for F;p = d;a + -;-;LA from (7.7),. Thus,

. du; du
Expression (7.12) = (8;5 + BX_;)(zsAj -~ sﬁsBj)

ou; Ou;
= Sij + 0(82)

=8jj »

(7.11)

(7.12)

(7.13)

where in writing (7.13)4, terms of 0(¢2) as € — 0 have been neglected. Hence, to the order

g2 as € = 0, we can identify the coefficient of F;, in (7.12) as the inverse of Fj,, i.e.,

- oX ou
Fai = _W? =04i — -53%531 ;

(7.14)
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With the use of (7.14) and the chain rule of differentiation, it can be readily verified that

6uA _ BuA 6XB 8uA 5 5
_EI_EX_BWI ( Bi — 3_ Cl)

= g;‘(—gsm +0(c2) as € — 0 (7.15)

and similarly

6u 311 6XA a'J-A
% = O % - 'G_(SAJ X OB

au.
= 2x0ai +0(e) as €0 . (7.16)

It follows from (7.15) and (7.16) that to 0(g2), it is immaterial whether the partial deriva-
tives of the displacement field u is taken with respect to x; or X, so that Qu = o to
P 1 A ox;  0X;

0(e2) as ¢ = 0. Hence in dealing with infinitesimal kinematics, it is not necessary to distin-

guish between Eulerian and Lagrangian form of kinematical quantities.

From (7.6), and (7.14), we have

T ou
Cij = FAil FAjl = (8ai — A SBI)(SAJ 'a_SCJ)

( SB,SAJ —5—8CJ Sai)) +0(e2) as e >0 . (7.17)
Hence, if terms of 0(¢2) as € — 0 can be neglected, then
S P
Cjj = T( ij Cl_])

Buy  Ou
=%(”ax—A B)SIASJB Eap 8ia 8jp = 0(c) as € >0 , (7.18)

so that any differences between the two strain measures disappear upon linearization.

In view of the remark made following (7.15), to the order of €2 we may display the

components of the relative displacement gradients either as us g or u;;. For example, if we
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make the latter choice, then we may write

u;j = & + @j; = 0(¢) ,

ej=0(g) , w;;=0(¢) as € >0 , (7.19)

where e;j and o;; are defined by
&jj = %'(ui,j +y5) , 0= %(ui,j -y - (7.20)

We observe here that u; ; = e;; = 0(¢) is called the cubical dilatation and that w;; = 0.

We consider now the linearized version of the Cauchy-Green measure Cxg, the stretch
Uag and the rotation R;j4. The Cauchy-Green measure Cap defined by (7.5), is related to
Eap by Cag =0aB + 2Esp. But, when the approximation (7.11) is adopted, then Capg can

be written as

CaB=Uac Ucg =d4B + 2EaB

=3+ 0(¢) as e >0 (7.21)
and from an examination of
(Bac + Eac)@cp + Ec) =84 + 2Eag + 0(e?) as € > 0 (7.22)
to the order €2 we can identify Uyp as
Uag=0ap+Eap=0a+0(¢) as e >0 . (7.23)

Also, by considering an expression of the form Uag(6gc — Egc), we conclude that if terms

of 0(&2) are neglected, then
Uab =88 - Eap=8a+0() as € >0 . (7.24)
We now turn to the rotation tensor Rjs. Recalling the polar decomposition theorem,

the components of the rotation tensor R can be written as

Rian=Fig Uga . (7.25)
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It then follows from (7.7), (7.24) and (7.11) that

Ria = (8ig + u; B)[OpA — %(uA,B +upa)l

) ; (7.26)

where terms of 0(2) as ¢ — 0 have been neglected and where use has been made of the

result (7.15). To the order of approximation considered, we may also write (7.26) as

R=1+Q or Rjj= Sij + 05 , (7.27)
where
Q=-QT= %—(H ~H")=0() or o= Lwy-w , (7.28)

which is consistent with (7.20)s.

In the remainder of this section, we employ the linearization procedure discussed

above and obtain the linearized version of such expressions as

J =det F =det(x; 4) (7.29)
and its inverse. For this purpose, we first recall that J can be represented as

J= %— €ijk ELMN FiL FjM FkN . (730)

Substituting the components of the displacement gradient in terms of u; 5 given by (7.7), in

(7.30) we get
J= %sijk eLMN(GiL + Ui, L)(Ojm + i M)(Ok N + UkN)

- %'Sijk eLMNISiL Sjm Sin + 33iL Sjm N + 0(e?)]



4] =
=1+8kNuk,N=1+uk,k=1+ekk as e—>0, (7.31)

where in obtaining (7.31); use has been made of the identities —é— = gjjk &ijk and gk &jjm =
28ym and where terms of 0(g2) as € — 0 have been neglected. The inverse of (7.31) is given
by

J‘1=[1+eii+ "']_1
=1-ej+ (e +
=1l-¢jas e—>0 (7.32)

and again in writing (7.32) terms of 0(g2) as € — 0 have been neglected.

(For a discussion of the interpretation of the infinitesimal strain measures, see Supple-

ment to Part I, Section 7.)
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8. The transport theorem.

Let $ be an arbitrary part (or subset) of the body B and suppose that $ occupies a
region %, with a closed boundary surface 0%, in a fixed reference configuration. Similarly
let ®, with closed boundary surface 07, be the region occupied by S in the configuration at

time t.

Let ¢ be any scalar-valued or tensor-valued field with the following representations:

0= d(x, ) = d(x(X, 0, 0 = (X, 1) , (8.1)

and consider the volume integral

I=[§(x, ydv = [ $(X, I dV , (8.2)
P P

where we have used dv =J dV, J = det F > 0. Often we shall encounter an expression of the

type (8.2) and we need to calculate its time derivative d7/dt. Thus, we write

a4 [4x,01dv
P
= [ LG, ynav
Py
a" A .
= X, t)J X, t)J]dV
a[o[?%( ) + (X, )]
a'\ %
— X, t)J + Jv; ;0(X, t)]dV
J’o[ﬁmﬁ( ) + 393 19X, 0]

= [@@%"_Q + (X, v 17dV
P

= [ + §(X, Hdiv v]IdV

P

= [ + §(x, div vidv , (8.3)
P

where in the fourth of (8.3) we have also used J=J vij and where
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b= 6<i>(a)§, t) _ 6&)(51;, 0, 6«5{% Dy . (8.4)

It then follows that the time derivative of (8.2); is given by
L[ 4(x, tdv = [ [¢+ §(x, div VIdv . (8.5)
P P

From the result (8.5) follows the various expressions given below:

4 [ odv=][ 6‘7’(8"; D, 20 0.y, fix, v ldv
P P 2

_ L [ 6(13%12, ), 5(¢(;;it)Vi) v

T L @igdldv + ajy B(x, Hvinda

= ﬂ'%ﬂldv + aj b(x, Ov-nda , (8.6)
P P

where the divergence theorem has been used. Next, apply (8.6)4 to a fixed spatial region P

in the configuration at time t and write

%I J)(x, t)dv =_[ %ﬁdv + I (f)(x, t)v-nda
P P oP

% [o(x. dv+ [ dx0v-nda . (8.7)
P

oP
The form (8.7), is another statement of the transport theorem. It is used when it is con-
venient to focus attention on a fixed region of space P at time t and consider the motion of
the body over this region. This form (8.7); can also be deduced directly from (8.6)4 without
the introduction of the fixed spatial region E’by the following line of argument: Since in the
calculation of the first integral in (8.6)4 the variable x (and hence the spatial region ?) is
fixed, the operator 0/0t commutes with the volume integral in (8.6)4 over a region ?and the

form (8.7), with 2 replaced by @ follows from (8.6);. The commuting of 0/0t with the
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volume integral in (8.6); may be contrasted with a similar calculation involving the volume
integral in (8.3),. In the latter integral, since X (and hence the material region 7, is fixed,

the operator d/dt commutes with the volume integral in (8.3), over the region 7.



-45 -

Part II: Conservation Laws and Some Related Results
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1. Conservation of mass.

We recall from section 1 of Part I that the mass of any part © of the body, i.e., M is a con-
tinuous function of its volume and that there exists a scalar mass density p such that

Ms)=[pdv, PSR, (M

P

where p = p(x, t) depends on the particular configuration occupying the region of space R and dv
is the element of volume in the present configuration. A statement of the conservation of mass
for any material part of the body in the present configuration is as follows:

%jpdv=0. ()

P

By the transport theorem, (2) can be written as j [b + pvixJdv = 0. The last result must hold for
. P
all arbitrary parts ?, hence, by the argument outlined previously, assuming that p is continuously

differentiable we have
[.‘) + PVkk = 0, (3)
where a superposed dot denotes material derivative, i.e., p = % + Vi _667)% The result (3) can

also be expressed as
0 _ 0 : _
& +(pvi)x =0 or & +div(pv) =0 . 4)

Equation (3) or (4) represents the local equation for conservation of mass. It is also referred to

as spatial form of the "continuity equation." p

Another form of the principle of conservation of mass may be stated as:

[pdv=[podV, (5)
P P
where 2, is the material part in the initial reference configuration, dV is the element of volume in

the reference configuration and p, denotes the mass density in the reference configuration.

Using dv =J dV, J =det F = det x; 5, from (5) we get
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p=1J"1p, or p=(det F)lp,, po=1p , (6)

which is the material form of continuity equation.
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Appendix to Sec. 1 of Part II

Theorem: If ¢(x, t) is continuous in K and

[opdv=0 (1)

4

for every part PC R, then the necessary and sufficient condition for the validity of (1) is that
$=0in R . ()
Proof: Let us first recall the definition of continuity.

Definition: A function ¢(x, t) is said to be continuous in a region R if for every x € R and every

¢ > 0 there exists a & > 0 such that | §(x, t) — d(;X, t)| < € whenever |x — x| <8.
Sufficiency: If ¢ = 0 in &, then (1) is trivially satisfied.

Necessity: (Proof by contradiction). Suppose that there is a point ,x € (< R) at which

0o = 0(oX, 1)>0. Then, by the continuity of ¢, there exists a 5 > 0 such that
105, 0 — o] <5 forall |x- x| <5 . 3)

Now let 2 be the region |x — (x| <& and V§ be the volume of this region so that

V5=1[6dv>0. 4

From (3) and the fact that ¢, > 0 we have

0> 32 in 2 . s)

Now let Pbe a part which contains P, then

[odv> [ Vagodv="20V5>0 . (6)
Ps Bs

Since the result (6) contradicts (1), it follows that there can exist no point (X such that (X, t) >

0. Similarly, we realize that if ¢, = ¢(oX, t) < 0, then by the continuity of ¢ there exists a 6 >0
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such that
165, D)~ ol <= 4 forall [x—ox| <3 . Q

Thus we can conclude that

o(x, t)<%°— forallx € 75 . (8)
Hence
ﬂ[ﬁ¢dv<2[6‘/z¢odv=‘/z¢oV5<0. )

Since (9) contradicts (1), again it follows that no point ox exists for which ¢(,x, t) < 0. Combin-
ing this result with that above we conclude that (2) is also a necessary condition for the validity

of (1).
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2.  Forces and couples. Euler’s laws.

We admit two types of forces, namely the body force per unit mass b and the surface force

(or contact force) per unit area) as follows:

b = b(X,t) = body force per unit mass,
(M
t = t(X,t ; n) = contact force per unit area.
It is important to note that the surface force t depends on the orientation of the surface area (with
outward unit normal n) upon which it acts. Similar to the definitions (1) above, we could also

admit body couple per unit mass ¢ and surface couple per unit area m, but these are ruled out in

the construction of classical continuum mechanics.

We also note here the following:

momentum per unit mass = v =X
()
moment of momentum per unit mass =X x V=X x X
We consider now the basic balance laws (also called conservation laws) for momentum and
moment of momentum (also called angular momentum) in the context of purely mechanical
theory. These balance laws, which are known as Euler’s laws, may be stated (in words) as fol-

lows:

Rate of change of momentum All external forces acting
for any part of the body = | on the part ’

€)

Rate of change of moment of momentum| | Moment of all external forces
for any part of the body ~ | acting on the part :

The above laws can be translated into mathematical forms both with respect to the current

configuration (Eulerian form) or with respect to the reference configuration (Lagrangian form).
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In this section we limit the discussion to the Eulerian (or spatial) form of the balance laws (3).
Thus, remembering the definitions (2); 5, the momentum for any part ? of the body occupying a

region ? with boundary surface 0% and the moment of momentum for any part 2 are:

Ivdm , fx x vdm , 4
? P

where dm = pdv is the element of mass. Also, the total force acting on and the moment of total

force acting on Pare:

[bdm + [tda , [(x x b)dm + [(xxt)da . (5)
P oP P oP

Keeping the expressions (4) and (5) in mind, the spatial (or Eulerian) form of the balance

laws (3) are:

4 fvdm = [bdm + [ tda, (6)
P P o

%Ixxvdm=.[xxbdm+jxxtda. (7
P P o

In the next few sections of Part II we exploit the implications of (6) - (7) and also derive their

local forms.
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3. Further consideration of the stress vector. Existence of the stress tensor and its rela-
tionship to the stress vector.

Consider an arbitrary part of the material region of the body B which occupies a part 2 in
the present configuration at time t. Let 2 be divided into two regions P, P, separated by a sur-
face o (see Fig. 3.1). Further, let 07, 0%, refer to the boundaries of P;, P, respectively; and let

o, 67" be the portions of the boundaries of 7y, P, such that

0P =0P, N OP,
OP' = 0P, N OP. (1)

Thus, a summary of the above description is as follows:

P=P,UP , OP=0F UOP',
0P =0P UG , 0P, =0P'UG. (2)

Now recall the linear momentum principle, i.e.,
%jpidv=_{pbdv+jt(n)da )
P 4 oP
or with the use of dm = p dv in the form:
%jim:jbderjt(n)da (4)
P P oP

which holds for an arbitrary material region 2 R, Application of (4) separately to the parts 7y,

P, and again to P} U P, = Pyields

4 [xdm-[bdm- [ tmda=0, (5)
2] P 0P
4 [xdm- [bdm- [ tmda=0 (6)
P P 0P
and
4 [ xdm- [ bdm- [ tgda=0. @

PP PUP oPLoP’
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The stress vector ty) in (5) acting over the boundary 0P, results from contact forces exerted
by the material on one side of the boundary (exterior to ?;) on the material of the other side.
Similar remarks hold for the stress vector in (6) and in (7). We emphasize that the stress vector
in (5) over 07 U o represents the contact force exerted on P, across the surface, etc. The
appropriate normals associated with ty) over the surface o are equal and opposite in sign. To
elaborate, let n be the outward unit normal at a point on ¢ when ¢ is a portion of 07;. Then, the

outward unit normal at the same point on ¢ when o is a portion of 0% is —n.

From combination of (5) and (6) and after subtraction from (7), we obtain the following

equation:

J- [t(n) 15 t(_n)]da =9 (8)

over the arbitrary surface 6. Assuming that the stress vector is a continuous function of position

and n, it follows that

t(n) = "t(—n) or t(X ) n) =— t(X . —n) . (9)

According to the result (9), the stress vectors acting on opposite sides of the same surface at
a given point are equal in magnitude and opposite in direction. The result (9) is known as

Cauchy’s lemma.

Again we suppose that a body 3 is mapped into the present configuration , at time t, which
occupies the region %, Consider some interior particle X, of B having position vector (X in R,
Construct at X a tetrahedron 7, lying entirely within ®, and in such a way that the side i is per-
pendicular to the e;-direction (see Fig. 3.2) and inclined plane - with outward unit normal jn -
falls in the octant where X, , X», X3 are all positive. We refer to the side i of Tby 5 and to the
inclined plane by S, respectively. Let h denote the height of the tetrahedron, i.e., the perpendicu-
lar distance from ,x to the inclined face S, and let S denote the area of this face. Then, the areas

of the three orthogonal faces S; are

S;=S,n-e=S 0 (10)
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and the volume of the tetrahedron is
V=~ hS (11)
tet — ‘j *
Recalling that dm = pdv, by virtue of the transport theorem and the conservation of mass

(see Sec. 1 of part I), the principle of linear momentum (4) reduces to

[%dm=[bdm+ [ tmda. (12)
4 P oP

Next, apply (12) to the material region 7'and obtain
[%dm=[bdm+ [tmda . (13)
T T oT

Observing that the surface integral in (13) represents contributions from all four boundary planes

of 7, we have

[ tada = 5‘1 [ teeyda+ [ tada. (14)
o1 =S S

Now according to Cauchy’s lemma in (9)
t-e) =~ L) (15)

and then with the use of (14) and (15), the linear momentum equation (13) can be rewritten in

the form
[ - bydm = [ tnyda - )3‘1 [ teyda. (16)
T S L

Now recall that dm = pdv and that p is already assumed to be bounded (see Sec. 1 of Part I).
Further, we assume that the fields X and b are bounded. Then, since (by a theorem of analysis)

| [fdv | <[ |fldv

where |f| denotes the absolute value of f, we obtain the following estimate for the integral on

the left-hand side of (16):

| [pG=b)dv < |p( ~b) |dv
a T
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=j.Kdv
T

=K*_[dv=K*—S§11
T

where use has been made of the mean value theorem for integrals, we have set
K(x,t)= |p(xX—b)| and K* stands for some specific interior value of K in 7 Hence, we may

conclude that there exists a fixed, positive real number K* such that

| pGi—b)dv|<K* S 17)
T

Next, assume that the stress vector field is continuous in both x and n. Then, by the mean value

theorem for integrals, the two surface integrals in (16) yield:

i J- t(ei)da =t'S; = ti* S oy (18)
=S

and
[ tmda=tin S, (19)
5y

where in writing (18), use has been made of (10) and where t" and t* stand for some specific
interior values (at the point ,X) of the stress vectors on the respective faces 5; and on the plane $
of T Each stress vector t* acts on that side of coordinate plane i which is associated with the

outward unit normal e;. It follows from (16), (17), (18) and (19) that (since K* is fixed)
LKshz | [pG-b)dv] = | ftonda- i [ teyda |
T S =l s
= |t(n) S—t" S on;]
=S|t — ti" onj | -
Therefore,

It — b on | < % K*h. (20)

Consider now a sequence of tetrahedra 7j, T, ..., of diminishing heights h; > hy > ..., each
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member of which is similar to Twith three mutually orthogonal faces having outward unit nor-
mals —e; and an inclined plane with outward unit normal ,n. Next, apply (20) to each member of

the sequence and, in the limit as h— 0, obtain
|t(n) — & onil <0, 21)

where the stress vectors in (21) are evaluated at the point X which is the common vertex of the

family of tetrahedra. It follows from (21) that
tin) =t ohi . (22)

Since (22) must hold at any point ,Xx and corresponding to any direction ,n, without ambiguity,

we suppress henceforth the designation star, replace ox by X, o by n and write
tm) = tin; . (23)
We now define ti; by
ti=ti-ex or ti="ti; e . (24)

Let t; denote the components of the stress vector t(y), i.e., ty = t(n) * €. Then, from (23) and (24)

we have
=1t ex=tn; - e =1tn;, (25)

where in (25); we have written for simplicity t in place of ). Thus, if t=t(x,t; n) is the stress
vector at the point x acting on a surface whose outward unit normal is n, then it is clear that
tyi = tii(x , t) are defined at x and are independent of m. The relation (25) establishes the
existence of the set of quantities ti;. It remains to show that t,; are Cartesian components of a
second order tensor. To this end, consider the transformation of two sets of Cartesian coordi-

nates and recall
Xk = ajkXj 5 e = ajke;, ny’ = ajn , ete. , (26)

where
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Ak =6 " ek' . (27)
From
t = tyey = ti'e’ = tiiniey = tii'n;'ey’ (28)

and with the use of n’ = asn;, €y’ = ag €5 where a;; are components of an orthogonal tensor, we

obtain (tg — anaskti )nres . But g are linearly independent. Therefore,

(tsr — agasktki Ny =0, (29)
which holds for all n and the quantity in parentheses is independent of n. Hence,

tsr = askarilki’ > (30)
which establishes the tensor character of t;. The second order tensor whose Cartesian com-

ponents are defined by (24) is called the Cauchy stress tensor.

With reference to a rectangular Cartesian system of spatial coordinates, consider a paral-

lelepiped shown in Fig. 3.3 and recall the formula
t; = tii€x (31

In (31), t; is the stress vector acting on the face whose outward unit normal is e;. For example,
on the front face of the parallelepiped in Fig. 3.3, the outward unit normal coincides with eq; and

thus, from (31) with i = 1, the stress vector on this face is given by
t) =tgiex =tye + 182 +131€3.

Keeping the above in mind, an examination of the subscripts of the stress tensor ty; in (31) easily
reveals that (i) the second index "i" refers to the stress vector t; on the face whose outward unit
normal is e;, while (ii) the first index "k" refers to the component of ¢; in the coordinate direc-
tions. Utilizing this convention, which stems from the definition of (24), the tractions (i.e., the

forces per unit area) are sketched in Fig. 3.3.
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4. Derivation of spatial (or Eulerian) form of the equations of motion.

We derive in this section the spatial (or Eulerian) form of the equations of motion from the
integral balance laws (6) and (7) of section 2. We begin with the balance of linear momentum

(6) in section 2 of Part II, which for the present purpose can be written as (recall that dm = pdv):

4 [pvdv = [pbdv + [ tmda - 0]
P P oP

By the transport theorem discussed in Part I, the left-hand side of (1) is given by

LHS of (1) = [[pv + pvdivy] dv
P

=I[bv+ pv + pv div v] dv
?

= [{pv + v[p + p divv] dv (2)
P

= _[padv .
P

where in arriving at the results, (2)4, we have also used the local conservation of mass given by
(3) of section 1. Next, we consider the surface integral in (1), substitute the relation (23) of sec-

tion 3, namely t = t;n;, and use the divergence theorem obtain

[tda= [tinida=[t;;dv , €))
oP oP P

where a comma following a subscript indicates partial differentiation.

After substitution of the results (2) and (3) into (1), the resulting equation can be put in the

form

[[tii+pb—pa]dv=0, (4)
P
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which must hold for all arbitrary material volumes. Then, since the integrand is a continuous

function, by the usual procedure we arrive at the local form

ti+pb=pa . (5)

Next, we turn to the balance of moment of momentum (7) in section 2 of Part II, which can

be rewritten as

dej(x x pv)dv = I(x x pb) dv + Ix X t(n) da (6)
P P oP

Again by the transport theorem, the left-hand side of (6) can be shown to yield

LHS of (6) = [x x padv . (7
P

Similarly, the surface integral in (6) after substitution from (23) of section 3 and the use of the

divergence theorem gives

Ix Xty da = J' (x x tin;) da = I(X x t;),; dv
oP o P

(8)
= [[(x,i x ) +x x t;] dv
P

Introduction of (7) and (8) into (6) results in

[lxi x t) +x x (t;; + pb—pa)] dv=0 ,

P
or

[xixtdv=0, 9)

P
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where in obtaining the last result we have also used (5). Since (9) must hold for all arbitrary

material volumes ® and since the integrand is continuous, by the usual argument we conclude

that

Xixt=0,

or equivalently

eixti=0 . (10)

The two results (5) and (10) represent the consequences of the balance of linear momentum
and moment of momentum. Although the foregoing derivation in vectorial form leading to
equations of motion (5) and the restriction (10) is simple and attractive, it conceals some of the
features of the stress tensor introduced earlier in section 3. Thus, we now recall the relation (24)
for t; = ti;ex and substitute this into (5) and (10) to obtain the alternative forms of the equations

of motion and the restriction on t;. With the use of the identities

tii = (tki€w)»i = tii€k »

(11)
e; X t; = e; X tyj€x = EikjLi€; »
the component forms of (6) and (10) result in
tii + Pbk = pak (12)
ti = tik - (13)

Thus, it is easily seen that the vector equation (5) is equivalent to the three scalar equations of
motion (12). Similarly, the restriction (10) on the three vectors t; implies the symmetry of the
stress tensor ti;. This last observation reveals the fact that the three scalar equations of motion

involve only six components of the stress instead of nine.
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5. Derivation of the equations of motion in referential (or Lagrangian) form.

In previous developments, the stress vector t (and therefore the stress tensor t;;) acting on P
are measured per unit area of surfaces in the present configuration at time t. In view of the
transformation x = (X, t) all surfaces in | can be mapped into corresponding surfaces in R,
occupied by the body in the reference configuration. For some purposes, it is more convenient to
measure the stress vector and the stress tensor acting on 2 per unit area of surfaces in B,
Corresponding to an arbitrary part 2 with boundary O in the present configuration, we have a
part 2, with boundary 0%, in the reference configuration (see Fig. 1.1). We denote the outward

unit normal to 6%, by N, where
N=N ACA . (1)
We denote the stress vector acting on O, but measured per unit area of the surface 0%, in the

reference configuration by p.

In terms of quantities measured in the reference configuration, the momentum principles

(i.e., linear and moment of momentum) are:

jpoadV=jpode+jpdA, ()
U Po 0P,

and
j(xxpoa)dV=j(xxpob)dV+jxxpdA (3)
P Py 0P,

where p = p(X , t; N) depends on position, time and the unit normal N to 0%,. By a procedure

similar to that used previously (Part II: Sec. 3), we can prove that

P=NaAPA , PA =Dia&i, 4)
p=pia Na €, (5)
p = P N . (Sa)

The vectors pa (A = 1,2,3) represent stress vectors acting across surfaces at a point P in the



-62 -

present configuration k which were originally coordinate planes X = const. through the
corresponding point P, in the reference configuration and measured per unit area of these planes
(Fig. 5.1). Also, the components pja (i.e., of the stress tensor P) represent surface forces acting
in the present configuration, but measured per unit area of an X,-plane in the reference
configuration and resolved parallel to the e;-directions. Introducing (5) into (2), by a procedure

similar to that used previously (Part II, Sec. 4), we obtain

PiAA + Pobi = Podi OF PAA + Pob = Pod , (6)
Then, from (3), (5), and after using (6), we also obtain

PiaXj,A = DjAXiA - @)

Introducing the notation sap through

PiB = Xi,ASAB » )
it follows from (7) that
SAB = SBA - ©

The last two are called, respectively, the symmetric and the nonsymmetric Piola-Kirchhoff

stress.

Also, it can be verified that
JT=PFT=FS FT or o= Xi APkA = Xk,APiA = Xj,AXk,BSAB > (10)

which relates the Cauchy stress T to the stress tensors P and S. To verify the truth of (10), we

may start with

df=tda=pdA (11)

which represents an element of contact force acting on the current configuration of the body 3 in
terms of both the spatial and referential description of the stress vector. Using the derived rela-

tion between the area elements da and dA, namely n da =J F-T N dA, we have
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df=tda=Tnda

(12)
=pdA=PNdA .
Hence (J T F-T — P)N dA = 0 for all N and we may conclude that J TF-T—-P=0or
JT=PFT, (13)

Recalling (8) or P =F S, we are led to the results (10);.

The coordinate-free forms of the various results between (6)-(10) may be displayed as fol-

lows:
DivP+p,b=p,V, (6a)
PFT=FPT, (7a)
P=FS, (8a)

§=S8T. (92)



Fig. 5.1
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6. Invariance under superposed rigid body motions.

It was established previously that a particle X of a body, which in the reference
configuration is at X and at time t in x occupies the place x = x(X, t), under superposed rigid

motions of the whole body at a different time t* =t + a occupies in K* the place x* = (X, t

specified by
xt=a+Qx or xif =a;+ Qj¥; . (1)

In (1), a is a vector-valued function of t, Q is a proper orthogonal tensor-valued function of t and
a is a constant. The vector a can be interpreted as a rigid body translation and Q as a rotation

tensor.

We have already studied how various kinematical quantities transform under superposed
rigid body motions and shall presently extend these considerations to the dynamical quantities
which appear in the equations of motion, namely

tijj + Pbi = pVi » tij ="t . 2
However, we first need to establish some further kinematical results:
(a) Further kinematical results:

Recall that an element of area dA of a material surface having outward unit normal vector
N in the reference configuration of a body is deformed at time t into the element of area da

whose outward unit normal vector is n. Then,

oXx
da, =] dA
ak ﬁik K » (3)
where
dak=dank,dAK=dANK. 4

Under the motion x* the element of area dA is deformed into da* and N is deformed into n* so

that

OXy
oxif

dalg‘= Jt+ dAK s (5)
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and

dai = da‘n . (6)
It follows from (1), that

oxit Ox;

—&—'k = Qij‘git = Q;djk = Qi 7

and consequently

Fi= o = o o = Qi ®)
l.e.,

F+=QF . )
Therefore,

J* = det F* = det(Q F)

= (det Q)(det F)
=+1 detF (10)
=7J.

Also, by the law of conservation of mass,

po=pl=p**, (11)
which together with (10)s implies

pr=p . (12)

Returning again to (1),, we see that
Qik Xi" = Qik a; + QikQjjX;

= Qika; + BijX;j
(13)

= Qikai + Xk »



.66 -

X = Qi(xi" — a;) or x=QT(x*-a) . (14)
Therefore
"
ot Qik » (15)

and consequently

GXK _ 8XK 6xJ 6XK

o - 0% oxg 0% s

which, in direct notation, reads
(FH1=F1QT (17)
and could also have been deduced by taking the inverse of both sides of (9).
Substituting the results (10)s and (16); into (5) yields
oX
dag = J-&jﬁ QidAx

= Qida; , (18)

where (3) has been used in completing the last step. The combination of (18), with (4); and (6)

gives
datng = Qgdan; . (19)

Now square both sides of (19) and remember that n and n* are unit vectors and Q is a proper

orthogonal tensor so that
(da*’nif nf = (da*)?
= Qi nj Qi my (da)?
= 8;; nj 1y (da)?

= njn; (da)? = (da)? . (20)
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Since area is always a positive number, it follws from (20)s that

dat=da 1)
and hence from (19) that
ni = Qy;n; or nt=Qn . (22)

It is worthwhile noticing that we have been able to deduce the behavior of F, F-1, J, p, da
and n under superposed rigid body motions without making any additional physical assumptions
in (a).

(b) The stress vector and the stress tensor.

It is clear from the developments of section 2 that not all kinematical quantities transform

according to formulae of the type

ut=Q(Hu , Ur=QMU Q'(H) (23)

under superposed rigid body motions, where u and U in (23) stand for a vector and a second
order tensor field, respectively. We investigate now the relationships between' t and t* and

between T and T+. For convenience, we recall the formulae for t; and t;;, i.e.,

t=tX,t;n) , =tzn; , (24)
tr=trX, th; n*) , tit= ti}'nf' . (25)

The mechanical fields which enter the linear and moment of momentum principles are the
stress vector and the body force per unit mass. We first consider the former, which in the motion
v(X, 1) is a vector field defined by (24);. Consider now a second motion which differs from the
first only by superposed rigid body motions specified in the form (1). The second motion
imparts a change in the orientation of the body, so that the outward unit normal vector n to the
same material surface (in the configuration k) becomes the unit normal vector n* (in the

configuration x*). The stress vector in the second motion takes the form indicated by (25); and

+ Our development follows Naghdi (1972, pp. 484-486). See also Green and Naghdi (1979).
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we have already seen that the outward unit normal vector n* transforms according to (22). The
geometrical properties of the transformation (1) were discussed in section 2. Keeping these in
mind and recalling that t is linear in n, it is reasonable to expect for the stress vector tH(X, t; n*)
(i) to have the same magnitude as t(X, t; n) and (ii) to have the same relative orientation to n* as

t has relative to n. These remarks lead us to introduce the following assumption:

tr=Qt , tf=Qjtj . (26)
We observe that (26) implies that

|62 =t t =t 6 = Qi Qi tj =S G L =t = [ £ 27
and, recalling (22), we also have

tt - nt =t nit = Q;; Qik tjng =tk =tjnj=t-m . (28)
Now

tt-nt = |[tF]| |nt| cosOt = |tF| cosO* (29)
and

t-n=|t| |n| cosb= |t]| cosO ,
which together with (27)7 and (28)s lead to

cosf* =cosO . (30)

The results (27) and (30) verify the motivating remarks made prior to (26) to the effect that (i)
the magnitude of t is the same as the magnitude of t* and (ii) the magnitude of the angle between

t and the outward unit normal n is the same as the magnitude of the angle between t* and n*.

We now turn attention to the stress tensor. From the results (24),, (25) and (22) we have
tit= ti}- nj+ = ti:f ij g . (31
But, by assumption (26), we also have

ti = Qjj tj = Qjj tik Nk - (32)
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Combination of (31) and (32) yields

(tf Qi — Qij tgnk =0 . (33)

The last result must hold for all n and the coefficient of ny is independent of ny. Therefore
tf Qik — Qij tix =0 »
i Qjk Qmk — Qmk Qjj tik =0 »

titn = Qi Qmk tik »
and hence

t¥ = Qim Qjn tmn (34)
or, in direct notation,

T*=QTQ" . (35)

A scalar, vector or tensor quantity which under superposed rigid body motions transforms as
(12), (22) or (35), respectively, is called objective. Of course, not all physical quantities are

objective. For example

vv=a+Qx+Qx ,
(36)
W+=QWQT+Q

are clearly not objective.
(c) Body forces and accelerations.
The equations of motion for the two motions ¥, and i’f of the body are, respectively, given
by
-g% =p(vi—by) ,
(37)

o
O~ pHi -y -

ox;*
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But
2 B Qo)
= Qim Qjn %t%mk— Qjk
= Qi Bk 2
— Qm 2, (38)
where (15) has been employed in (38),. It follows from (38)4 and (37) that
p* (V" = bi") = Qim P(Vm — bm) (39)
which with the aid of (12) becomes
Vi = bj* = Qim (Vm — bm) (40)
or
vi-bt=Q(v-b) .
References
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7. The principle of balance of energy.
We begin by assuming the existence of a scalar potential function per unit mass & = &(x,t),
called the specific internal energy. The internal energy for each part 2 in the present

configuration is defined by the volume integral

Ipedv. (1)
P

We introduce a scalar field r = r(x,t) per unit mass per unit time, called the specific heat supply
(or heat absorption), as well as the heat flux across a surface 0P (with the outward unit normal n)

by the scalar h = h(x,t;n) per unit area per unit time. The integrals

H=jprdv—jhda, Q)
P oP

where 82 is the boundary of ?, defines the heat per unit time entering the part ? in the present
configuration. The first term on the right-hand side of (2) represents the heat transmitted into P
by radiation and the second term the heat entering P by conduction. We also recall that the

kinetic energy for each part Pin the present configuration is defined as
[4oveva
5 pVv-vdv. 3)
P

We record now the rate of work by the body and contact forces, i.e., R =Ry, + R¢, where
Rb=jpb—vdv, Rc=_|'t-vda. 4)
P oP

In (4), the scalar b - v which occurs in the volume integral represents the rate of work per unit
mass by the body forces. Similarly, t - v is a scalar representing rate of work per unit area by the
contact force t. Each of the integrals in (4) is a rate of work term and thus has the dimension of

"work per unit time".

With the foregoing background, the law of balance of energy may be stated as follows: The
rate of increase of internal energy plus kinetic energy is equal to the rate of work by body force

and contact force plus energies due to heat per unit time entering the body. Thus, we write



1.
—(%-.Lp[8+—%—v-v]dv=£prdv+£pb.vdv

+Irv®—jh®. (5)
oP oP

We observe that the negative sign in front of the last integral in (5), as well as in (2), is in accord
with the convention that heat h =h(x,t;n) is assumed to flow into the surface in the direction

opposite to that of the outward unit normal to 0.
By application of (5) to an elementary tetrahedron, it can be shown that hgy) = —h(_n) or
h(x,t;n) = —h(x,t;—n), together with
h=qnj=q-n, q=qie. (6)

The last surface integral in (5) can then be transformed into a volume integral as follows (using

the divergence theorem):

_[ hda= J' qin; da=_[qi,i dv. @)

oP oP U

Similarly, using t = ti;n;e, and the divergence theorem
I t-vda= _[ (t-v);dv= I(tkivg,i dv
oP oP P

= J- [tki,in + tkin,i] dv. (8)
P

By the transport theorem, the left-hand side of (5) can be expressed

%J‘p[s+71—v-v] dv=j'{p(é+v-\")+(s+%v-v)([')+pvm,m)} dv
P P

=[pe+v-V), 9)
P

where in obtaining the last result conservation of mass has been used.
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Now, substitute (7), (8) and (9) into (5) and rearrange the terms to obtain

0=[{pr—gii-p & + tiiVici + Vit + P(bx = Vil} dv,
?

and after using also the equations of motion we get

[ {pr—qii—p&+tavii} dv=0, (10)
P

which holds for all arbitrary parts 2. Hence, it follows that the local energy equation is
pr-g-pe+P=0, (11)
where the stress power P is defined by
P = tyiVi.i = tidxi » (12)

and where we have made use of the fact that vy ; = dy; + Wy and ty; is symmetric.



Part III: Examples of Constitutive Equations and Applications

Inviscid and viscous fluids and nonlinear and linear elastic solids
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Examples of Constitutive Equations

If a solid body and a fluid body are subjected to the same motion, experience shows that, in
general, the stress field in the solid will be different from that in the fluid. Such differences in
material behavior are accounted for by constitutive relations. Constitutive relations define
classes of ideal materials, including ideal fluids, elastic solids, viscous fluids, rigid bodies,
elastic-plastic materials, viscoelastic materials, and many other important examples. A number

of ideal materials will be discussed in the following sections.

1. Inviscid fluid

In hydrodynamics, an inviscid or an ideal fluid (including an ideal gas) is conceived of as a
medium possessing the following property: it cannot sustain shearing stress, and hence the stress
vector acting on any surface in the fluid is always directed along the normal to the surface, i.e., t
is parallel to n. However, it is desirable to begin from a more general viewpoint. Thus, we

assume that an inviscid fluid is characterized by a constitutive equation of the form
T=T(p) or tij="t(p) . (LD

In (1.1), the response function T is a single-valued function of its argument and p is the mass
density of the fluid. Morever, it is instructive to consider an even more general assumption and
suppose the constitutive response function to depend also on the velocity vectorfv. This is
because at this stage it is not clear why the explicit dependence on v (or even x) should be ruled

out. With this background, we begin by examining the more general constitutive assumption:
T="T(p,v) or t="tii(p, vi) - (12)

It is convenient to recall here (from Parts I & II) that under a superposed rigid body motion

the position x moves to x* in accordance with

xt(1)=a(t) + Q(7)x , (TLt)

+ We rule out inclusion of the velocity gradient which gives rise to a shearing motion. The latter is not compati-
ble with the properties of an ideal fluid stipulated in the opening paragraph of section 1.
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(1.3)
vi(r)=a'(1) + Q()v(v) + Q'()x ,
where Q' = Q Q, Q is the rigid body angular velocity, the temporary notation Q'(t) is defined by
Q'(x)= —ad?Q(t) with t being real. Consider now a special case of (1.3) for which at time 1 =t,

a’(t) = a(t) is a constant vector and Q is a constant €, such that at time t

at)=c , Q)= Q1) ,

where ¢ is a constant vector and Q, is a constant rigid body angular velocity tensor. We note for
later reference that when the above special motion represents a rigid body translational velocity,

we obtain

QH=1, Q1)=0,
(1.4)

vt=c+v.
Also, when the special motion involves only a constant rigid body angular velocity, we have

c=0,Qt)=I, Q)= ,
(1.5)
vi=v+Qx , L*=L+Q,

We now examine (1.2); under a constant rigid body translational velocity of the form (1.4).
Since the constitutive equation (1.2); must hold for all motions, including a s.r.b.m., and since
on physical grounds the response function T (but not its arguments) must remain unaltered under

such superposed rigid body motions, we have

T+=T(p*, v)=T(p*,v+c) . (1.6)
Now under the special motion (1.4), the stress tensor transforms as

T+=T . (1.7)
Substituting (1.2); and (1.6); with (1.7) we get

T(p,v)=T(p,v+0) , (1.8)
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which must hold for all constant values c. It follows that (1.8) can be satisfied only if the depen-
dence of T on v is suppressed and we are left with the original assumption (1.1). It should be
evident that the same type of conclusion can be reached if we had initially included in (1.2) also

dependence on the current position X.

Once more we examine the constitutive equation (1.1) under a general s.r.b.m., and recall

that under such motions
T+=QTQT .
Introducing the assumption (1.1) into the above invariance requirement, we obtain

TepH=QT(MQ", (1.9)
which must hold for all proper orthogonal tensors Q. Since the condition (1.9) is also unaltered
if Q is replaced by — Q, it follows that (1.9) must hold for all orthogonal Q and not just the
proper orthogonal ones. Hence, T(p) is an isotropic tensor and can only be a scalar multiple of

the identity tensor I (see the Supplement), i.e.,
T=T(p)=—p(P)I or tj=1tj=-p(p)3; - (1.10)

In (1.10), p is a scalar function called the pressure and the minus sign is introduced by conven-
tion, in order to conform to the traditional form in which the stress tensor T = —pl for an inviscid

fluid is displayed in the fluid dynamics literature.

Substitution of the result (1.10) into the relation t = T n (see Part II) yields

t=-p(p)n or t=-p(p)ng , (1.11)

which shows that the stress vector acting on a surface in an inviscid fluid is always directed
along the normal to the surface. In most books on fluid dynamics, (1.11); is taken as a defining
property of an inviscid fluid, as was also indicated in the opending paragraph of this section. If
(1.11) instead of (1.1) is taken as a starting point, then with the use of t=T n we have
T n=-p(p)n or (T + pI)n = 0 which must hold for all outward unit normal n, and we may con-

clude that T = —pl in agreement with the earlier result (1.10) for the stress tensor in an inviscid
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fluid.

We are now in a position to obtain the differential equation of motion for the determination
of the velocity field v in an inviscid fluid. Thus, after substituting (1.10) into the equations of

motion (see Part II), we arrive at
—gradp + pb=pv or p;+ pbi=pV; . (1.12)

For a specified body force b, the vector equation (1.12); [or (1.12),], together with the equation
for mass conservation represent four scalar equations for the determination of the four unknown
(p, v). The simple structure of (1.12) at first sight may be somewhat deceptive: these equations
are difficult to solve by analytical procedures (or even numerical methods). This is because of

the nonlinearity due to the convective terms in v.
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2. Viscous fluid.

Although our main objective here is the development of linear constitutive equations for a
(Newtonian) viscous fluid, it is enlightening to start with a more general constitutive assumption.
For a viscous fluid we assume that the stress tensor T depends on the present value of the mass
density p, the velocity vector v and the velocity gradient tensor L. Thus, we write

T= T(p9 v, L) or t1_] =T1j(p9 Vi» Vk,l) > (21)

where T is a single-valued function of its arguments and satisfies any other continuity or dif-
ferentiability conditions that may be required in subsequent analysis. Alternatively, for conveni-

ence and without loss in generality, we recall that L = D + W and rewrite (2.1) as
T= T(p: v,D, W) or tl_] = tlj(pa Vi, Ayt Wigg) (22)

The constitutive assumption (2.2); [or (2.2);] must hold for all admissible motions, includ-
ing such superposed rigid body motions as those specified by (1.4) and (1.5). First, by a pro-
cedure parallel to that discussed in the previous section (see the development between Eqgs.
(1.6)-(1.8) of section 1) we may suppress the dependence of the response function in (2.2); on v
and arrive at

T="T(p, D, W) or t;=1;(p, dia, Wic) - 23)
Next, from the invariance requirement for T, namely T+ = Q T QT, we obtain the restriction

T(p*, D*, WH=QT(p,D, W) QT , (2.4)
which must hold for all proper orthogonal tensors Q. Consider now the special superposed rigid
body motion specified by (1.5). Under this special motion (2.4) becomes

T, D, W+Q)=T(p,D, W) , (2.5)

so that the response function T cannot depend on W and the constitutive assumption (2.3) is

reduced to

T=T(p, D) or t;=ti(p, dw) , (2.6)
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where T in (2.6) is a different function from that in (2.3). By imposing on (2.6) the invariance

requirement we arrive at

T(p*, D) =Q T(p, D)QT . @7
The restriction (2.7) must hold for all proper orthogonal tensors Q. Since the condition (2.7) is
also unaltered if Q is replaced by — Q, it follows that (2.7) holds for all orthogonal Q and not
just the proper orthogonal ones.

A viscous fluid characterized by the nonlinear constitutive equation (2.6); is known as the
Reiner-Rivlin fluid. We do not pursue further discussions of the general forms (2.6), but in the
remainder of this section consider in some detail the (Newtonian) linear viscous fluid as a special
case in which the response function T is a linear function of D with coefficients which depend on
p.

In the discussion of the linear viscous fluid, it is convenient, in what follows, to carry out
the details of the development of the constitutive equations in terms of their tensor components.
Thus, for a linear viscous fluid, we specifiy ;; on the right-hand side of (2.6), to be linear in dy;

in the form

tij(p, diy) = aj + by dis (2.8)
the coefficients aj; and by are functions of p and satisfy the symmetry conditions

aij = aji , bk =bjis » bijks = bijik > (2.9)
where the condition (2.9)3 arises from the symmetry of dy; and is assumed without loss in gen-

erality.

The response function (2.8) must satisfy the invariance condition (2.7) which in component

form is

tii(P, D) = Qim Qjn trmn (P, di) (2.10)

where in recording the above we have also used p* = p in the argument of the left-hand side of

(2.10). Introducing (2.8) into (2.10) we obtain the restriction
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aj; + bijkl Qkp qu dpq = Qim an (@mn + bmnpq dpq) (2.11)
which holds for all arbitrary dy;. Considering separately the cases when dy; = 0 and dy; # 0, it

follows from (2.11) that

aij = Qim Qjn amn > (2.12)
and

biik = Qim Qjn Qkp Qiq bmnpq >

where in obtaining (2.12), we have made use of the orthogonality property of Q;;. Now accord-
ing to the theorems on isotropic tensors (see the Supplement) the coefficients a;; and by are,

respectively, isotropic tensors of order two and four and hence must have the forms

ajj = _psij (2. 13)
bijis = A8;j Sy + 1Sk S5 + ¥Oiu Sjk »

where p, A, W, y are functions of p only and the use of —p instead of p in (2.13); is for later con-
venience and in order to conform to known expressions in the fluid dynamics literature. If we
appeal to the symmetry condition (2.9),, then the right-hand side of (2.13), must be symmetric

in the pair of indices (ij) and (2.13), reduces to
bijkl = Miij 8k1 I p(&ik 8j1 + 8i1 Sjk) . (2.14)

It should be noted that the expression (2.14) implies a further symmetry restriction so that by,

satisfies

bijks = bksj » (2.15)
in addition to (2.9), 3. Substitution of (2.13); and (2.14) into (2.8) finally yields

tij = —pd;j + AS; dik + 2pdjj (2.16)

as the constitutive equation for a (Newtonian) linear viscous fluid. The scalar p in (2.16) is the

pressure and A, p are called the viscosity coefficients.
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The differential equations of motion for a (Newtonian) linear viscous fluid in terms of the
velocity field can be obtained by substituting (2.16) into Cauchy’s stress equations of motion,

and for constant A and , this leads to
—p,;i + A i + 2ud;;j + pbi = pv; .
After recalling the kinematical relations
dig = Vik » dij= ‘IZ(ViJ + Vi)
and making use of v; ;; = v; i, the above differential equations of motion become
—p,i + (A + W) Viki + Bk + pbi = pVi (2.17a)
or
-Vp+ A +wWV(V-v)+uViv+pb=pv . (2.17b)

The system of differential equations (2.17) and the mass conservation represent four scalar equa-
tions for the determination of the four unknowns, (p, v). It should be noted in the absence of

viscous affects (A = pu = 0), (2.17) reduces to those for an inviscid fluid (see Egs. (1.12)).
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3. Elastic solids: Nonlinear constitutive equations.

We consider here general constitutive equations for an elastic solid in the context of the

purely mechanical theory.

A material is defined by a constitutive assumption. Moreover, an elastic material in the
purely mechanical theory may be defined in terms of a constitutive equation for the stress. We

return to this later but first we need to establish some preliminaries.

We recall the expression for the rate of work by the body and contact forces as follows (see

Sec. 7 of Part II):

R=Rp+R; , (3.1
Rpy=[pb-vdv, Re=[t-vda . (3.2)
P oP
Also, the local equations of motion (in terms of the symmetric stress tensor of Cauchy) are:
tiii + POk = pVk 5 ti =ik - (3.3)

Consider now the expression for R, use the divergence theorem to transform the surface

integral into a volume integral and make use of the equations of motion (3.3); to obtain:

R.= I t-vda= I tevida = J'tkinivkda = J'(tkivk),idv
oP oP oP P

= Itki,ivkdv + Itkivk,idv

P P
= J.p\"kadV = Ipkade + Itkin,idV . (3.4
P P P
Then, after using (3.2),
Re= J.p\'fkvkdv —Rp+ I tkin,idV . (3.5)
P L4

From this result and (3.1) follows that

R=3K (9~ Ltkivk,idv , (3.6)
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where

K¢S = I —lfpv ‘vdv= _[ —21—pvkvk dv (3.7)
P ?

is the kinetic energy for the material region occupied by P in the present configuration k .

We define an elastic body as one whose response depends on deformation gradient or on an
appropriate measure of strain. We assume the existence of a strain energy or a stored energy per

unit mass y such that
GWivki=P V (3.8)

and we define the (total) strain energy for each part 2in the present configuration by

U = L pydv . (3.9)
Then, by (3.6), (3.8), (3.9), the conservation of mass and the transport theorem, we have

R = LK)+ U] - (3.10)

We have thus proved the following theorem: The rate of work by contact and body forces is

equal to the sum of the rate of kinetic energy and the rate of the strain energy.
We now return to (3.7) and for an elastic body assume that the strain energy density
v =V'(F) [or v = y'(xj )]

Alternatively, we may assume that y depends on a measure of strain such as E and write

v =y(E) or y=y(Eap) - (3.11)

Now the material derivative of y is

v = B%A%EAB = %dﬂ( Xk A XiB » (3.12)

where in obtaining (3.11) we have used (from Part I) the expressions

2EAB =CaB —0AB , CAB=XiAXiB ,

Eap = dixxk,aXiB » CaB=2Eap -
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Introducing (3.12) into (3.8), we obtain

tyidy; = P-a%‘gg X; AXk,Bdki

or
(ti = P‘a‘%xi,Axk,B)dki =0, (3.13)

which must hold for all dy;. Hence, we conclude that

g = ;>xi,,,g<k,,3,3%{;E or T= ng%’-FT . (3.14)

If instead of the constitutive assumption (3.11), we begin with the alternative assumption

y=y(C) or y=y(Cap) , (3.15)

then in a manner analogous to the development that led to (3.15) we deduce that

~ ~

=2 xi,Axk,B—é%\ﬁ; or T=2p FQLFT . (3.16)
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4. Elastic solids: Linear constitutive equations.
We recall that in the context of infinitesimal kinematics discussed previously (Part I, sec-
tion 7), a function f is said to be of 0(e") as € — 0 if there exists a nonnegative real constant C
such that || f|| < Ce? as € - 0. Moreover, for infinitesimal deformation gradients, the distinction
between Lagrangian and Eulerian descriptions disappears; and that, to within 0(e2), the relative
displacement gradient can be written as
u;; = € + 0y, 4.1)

where

o= % (ujj + ) = 0(e) , ;= % (uij —uj,) = 0(e) ,

ase—0. 4.2)

We further assume that all derivatives (with respect to both coordinates and time) of kinematical
quantities, e.g., Uj, €jj, ®jj, are also of 0(¢) as € — 0.

We now introduce additional assumptions in order to obtain a complete linear theory.
Thus, we assume that the fixed reference configuration (which was identified with the initial
configuration) is "stress-free", i.e., in this configuration the stress vector t and the body force b
are zero. We also assume that the body force b (or its components b;) and the stress vector t (or
its components t;) -- when expressed in suitable non-dimensional form -- as well as the com-

ponents of the stress tensor ty;, all are of 0(¢) as € — 0.

Recalling that for infinitesimal motion (see Eq. (7.32) of Part 1, section 7)
Jl=1-¢;=1-0(e)ase >0, (4.3)
from the referential form of the conservation of mass, namely pJ = p,, we conclude that
p=po—0(e)ase—>0. (4.4)

Keeping in mind that t, b, u are all of 0(¢) as € — 0, with the help of (4.4) and after the neglect

of terms of 0(g2) as € — 0, the equations of motion in the linear theory reduce to
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tiii + Pobk = PoVik » (4.5)
ti = tik » (4.6)
where v; = is the particle velocity, a comma denotes partial differentiation and the v; on the

right-hand side of (4.5) stands for % It should be observed that each term in (4.5) is of 0(¢) as

e—0.

The equations of motion of the linear theory can also be obtained from the results of the
alternative derivation (see Part II, section 5). Thus, in terms of the non-symmetric Piola-

Kirchhoff stress tensor p;a, the equations of motion are
PiaA + Pobi = PoVi 5 4.7)
PiaXj A = PjAXiA » (4.8)
and we also recall the relations
PiB = Xi,ASAB > SAB = SBA > (4.9)
Jtyi = Xk APiA = Xk,AXi,BSAB - (4.10)
Since J =1+ 0(g), Xj o = 3ja + uj o = Sia + 0(g), Xa; = 8a; + 0(¢) as € — 0, we have
pia = JtiX Ak
=t};0ak + 0(¢?) as € > 0. (4.11)
Similarly, since now p;s = 0(¢) as € — 0, (4.9), after using (4.11) yields
SAB = PiBXAi
=piBdai + 0(e?) as € > 0. (4.12)

It follows from (4.11) and (4.12) that if terms of 0(¢2) as € — 0 are neglected, then p;a, Sap, tij
are all equal and the distinction between the Cauchy stress and the Piola-Kirchhoff stresses

disappears. Hence, the linearized version of the equations of motion (4.7) can also be written as
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SAB,B + PobA = PoliA - 4.13)

We now turn our attention to the linearized version of the constitutive equation discussed in
the previous section. We recall that in the context of nonlinear elasticity, the constitutive equa-

tions for the stress tensor may be expressed as

ti = PXi,AXKB PE. - - (4.14)

In the linear theory discussed above the components of the stress tensor ty; = 0(g) as € = 0.
Since the right-hand side of (4.14) must also be of 0(¢) as € — 0 in the linear theory, for an elas-
tic body which is initially "stress-free", after linearization of (4.14), it will suffice to assume that
\_u is quadratic in the infinitesimal strain e;;. To justify this stipulation, we proceed to obtain the

linearized version of (4.14). Recall that in the infinitesimal theory,
J=1+0(g)
XA = 0ia + 0(€) (4.15)

€ = EABSAiSBj " 2 0(82) S

Using these expressions, we may linearize equation (4.14) to obtain

tii = PX{ AXk B _6_163_%; = po[l - 0(8)] [SiA + 0(8)] [SkB + 0(8)} '5%\/%]3'

oe
-af\y— 8iadkp + 0(g?) = po emn -a—ﬂ 3iadkp + 0(g?)

v O(EpodpmO
= Po a(ZW ( PgEim Qn) 3;A0kB

OE
3—\”—6 PQ 5 OPmOQndiadis - (4.16)
mn

Since Exp is a symmetric second order tensor, we have

aEpQ ] aEpQ aEpQ ek |
OEaB [EEAB OEga| 2 Spados * SPBESQA] '
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Using the last result, we may express (4.16) as
ti = po 22 [ SraBa + ra0n) Spmdandiadis = Po -+ 0(e?) @17)

Thus, for a linear elastic solid which is stress free in its reference configuration, we may

assume

Po¥ = = Cijeied (4.18)
and then (4.14) yields the constitutive relations

ti; = Cijkrexs » (4.19)
where the constant coefficients Cjj; satisfy the symmetries

Ciki = Gkt = Cijie = Cuij - (4.20)
Upon transformation of coordinates, namely X’ = a;;x;, Cjj; transform as

Ciji = aim"‘ljnakpalqc'rnnpq . (4.21)

The expression (4.19) can also be obtained with the use of (4.17) and (4.18), as well as the rela-

tionship

oe;;
o= 3 [aimaj,, + sinsjmJ : (4.22)

and leads to

fon =
mn’a_emn

oe;; 0
%Cijkleijekl} = %—Cijkl [-agn%n- ek/ + €jj @:—nklﬂ
= -%— Cijkl{ [S,mSJn + SmSjm] €y + [Bkmsln =+ SknﬁlmJ eij} (4.23)

= 7}; { [Cmnkl + Cnmkl] ek + [Cijmn + Cijnm] eij} s

or by the symmetries (4.19),
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thn = Cmnklekl . (424)

For an isotropic elastic solid, the coefficients Cj;i; are given by
Cijit = M0 + M[Sikéij, + Siﬁkj] (4.25)
and (4.19) reduces to
tij = Ae Oy + 2pey) (4.26)

where A and p are called the Lamé constants.
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5. Some steady flows of viscous fluids.

In this section, we discuss several steady flows of an incompressible Newtonian viscous
fluid. We observe that a motion is said to be steady if all quantities (velocity, density, etc.) are
independent of time at any fixed point. Next, we recall that for steady motions, the stress dif-
ferential equations of motion become

tijj + Pb; = PVixVk - (5.1)

Since we are concerned with an incompressible fluid with constant mass density, it follows that

b = 0 and then by the conservation of mass
divv= Vkk = dkk ={ ’ (5.2)

so that an incompressible material can only sustain an isochoric motion (see also Part I/5). It fol-

lows that for an incompressible linear viscous fluid, the constitutive equations are
tij = _psij + 2“dij . (5.3)

A. Flow down an inclined plane

Consider the steady flow of an incompressible Newtonian viscous fluid under the
action of gravity down an inclined plane. The plane makes an angle 0 with the horizontal
(see Fig. 5.1). Choose the coordinate system x; such that the free surface of the fluid is

given by the plane x3 = h. The pressure on the free surface is constant p = p,.

Assume a solution of the form
v =Vv(Xp, X3)€ . (5.4)

Then the equation of conservation of mass for an incompressible material (5.2) gives
Vik = ,(% =0 (5.5)

Hence, we conclude that v = v(x3). The components of the rate of deformation tensor are

djj=dpp=diz=dyp=ds3=0

1 d
3= 7 Fy > (5.6)
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and from (5.3) we obtain

t1] =tz = t33 = —p(X1, X2, X3)

tp=t13=0, t23=u§—,f3— : (5.7)

With the use of b = g(sinfe; — cosbe3), the equations of conservation of linear momentum

(5.1) become

-% =pvievk=0

2
-% + p% + pg sind =0 (5.8)
- —pgcosd=0

By integrating (5.8); and (5.8)3 we have
p=-pg X3 cosh + f(x;) , (5.9)

where f(x,) is an arbitrary function of integration. With the use of the boundary condition

on the free surface x3 = h we have

p(x2, X3 = h) = f(x,) — pgh cosb = p,
f(x,) = po + pgh cosO

and by (5.9)
p =DPo + pg(h — x3)c0s0 . (5.10)

After introducing (5.10) into (5.8), and integrating we get
=—-L£og5ind xf+ax3+b , 5.11
v -g& x7 +ax3 (5.11)

where a, b are constants of integration. The boundary condition at x3 =0 is v(x3=0) =0,
which gives b=0. The traction boundary conditions at the free surface, namely

t23(x3 = h) = 0, with the help of (5.7) and (5.11) gives

t23(X3=h)=M—£Z—3|x3=h=—%gh sinf +a=0

a=P&hsind
il
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and hence
= 2h - ind® . 512
v %ﬁ( X3)X3 Sin (5.12)

B. Couette flow

Consider the steady flow maintained between two concentric rotating cylinders. The
inner cylinder has radius r; and rotates with constant angular velocity ;; the outer cylinder

has the radius r, and it rotates with constant angular velocity o, (see Fig. 5-2).

We use a system of cylindrical polar coordinates with the polar radius restricted

tor; <r<r,. In order to deal with this problem, we consider the following velocity field
v =v(r)eg (5.13)
and consider p to be a function of r only, i.e., p = p(r).
The components of the rate of deformation tensor are (see Appendix to Part III)
do=5S(¥)
dy=d,=dgg=dg,=d,=0 . (5.14)

Then the constitutive equations (5.3) assume the form

trr =1gp = lzz =P
to = r-gr (F) (5.15)
=1 =0 .

The conservation of mass for an incompressible material (5.2) is satisfied by the choice
(5.13). The equations of conservation of linear momentum became (see Appendix to Part

1)
e
h () + 20§ (P =0 (5.16)

and the z-component of the equations is satisfied identically. Equation (5.16), may be

integrated twice to yield
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vear+ 2, (5.17)

where a, b are constants of integration. The boundary conditions are

V(1o) = To®o , P(To) =Po
V(1) = ;0 (5.18)

so that a and b may be determined from (5.18); and (5.18)3, i.e.,

rl

Ir_2 (____

V= roo)o . (5.19)

The pressure p = p(r) can be determined by substituting (5.19) into (5.16);, integrating the
resulting expression and using also the condition (5.18),. However, we do not carry out the

calculation here.

C. Poiseuille flow

Consider the steady flow in a straight pipe of circular cross-section with radius r,,.
Choose a system of cylindrical polar coordinates as shown (see Fig. 5-3) with r <r,. We

assume that the velocity field has the form
v=x(t)e; , (5.20)
which identically satisfies the conservation of mass for an incompressible material (5.2).
The components of the rate of deformation tensor are
dp= 53X
dr =dgg=dz, =dp,=drg=0 (5.21)

and the constitutive equations (5.3) become

tr =1t =1tz = _p(ra 9, Z)
ey = u%‘ri (5.22)
toz=tg=0 .
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The equations of conservation of linear momentum now reduce to

_%ra -0
150
p% - —g% + -‘;—%:_i =) .
From equations (5.23); and (5.23), we conclude that

p=p(2) ,

and from (5.23)3, since v = v(r), we conclude that

R
where c is a constant. We may then integrate (5.23); to yield

2
v="-C talnr+b

m

where a, b are constants of integration. The boundary condition

v(rO) = O s

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

along with the stipulation that v must be bounded in 0 <r <r, (since /nr — —o as r — 0)

yield

V= 4L(r2 -12) .

m

(5.28)

Once the pressures at two points z; and z; are known the constant ¢ may be determined

from (5.25) and the velocity field is then known completely.



Fig. 5.1

Fig. 5.2

Fig. 5.3
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Some unsteady flow problems.

In this section, we discuss two unsteady flow problems for compressible viscous fluids.

Supplementary to the equations of motion, we recall that the constitutive equations for compres-

sible viscous fluids has the form

tj = _psij + Adyk Sij + zudij (6.1)

where p, A, u may be functions of p.

A. Stokes’ first problem
(see Problem Set)

B. Stokes’ second problem

Consider the unsteady flow of a semi-infinite fluid caused by the periodic motion of
the bounding plane in the x; — x; plane (see Fig. 6.1). Let the fluid occupy the region
x3>0 and choose a coordinate system such that the motion of the bounding plane is
specified by

vp=Ucoswte; . (6.2)
where U and o are constants. The boundary condition at the plane x3 = 0 is

V(X], X2, X3=0,t) = v, . (6.3)

Assume a solution of the form
v = f(x3) cos (ot — Ax3)e; , (6.4)

where the arbitrary function f and the constant A are to be determined. We note that the
motion (6.4) satisfied V - v = 0 and hence is isochoric. Then provided that p = 0 the conser-
vation of mass is satisfied. If the fluid is initially homogeneous then p = 0 implies that p is

constant and hence the coefficients in (6.1), p, A, L are constants.

The components of the rate of deformation tensor are

djy=djp=dypy=dy3=ds3=0
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diz = %Hdif; cos(ot — Ax3) + %—Af sin(ot — Ax3) (6.5)

and the acceleration vector is
a = —of sin(ot — Axjz)e; . (6.6)
Assuming that the fluid is homogeneous then from (6.1) the components of the stress

tensor are given by

tir=tpn=t3=-p

ti3= pa%cos(mt — Ax3) + pAf sin(ot — Ax3)

where p, p are constants. With the use of (6.6) and (6.7) the equations of conservation of

linear momentum become

d2f 2 df . _
{HW - HA f} cos(mt — Axs) +{2]JAE + pcof} sin(ot — Ax3) =0 , (6.8)

where the second and third equations of motion are satisfied exactly. It follows from (6.8)

that
Af e df | po o
dx# MR, HX3+2pAf 0. (6.9)

By integrating (6.9); 2, and remembering that p, p are constant, we have

__p®
foCe THAY A=\/g% : (6.10)

where C is a constant of integration. The boundary condition (6.3) determines the constant

C =U so that

_'\, [0}
v=Ue %Tfm cos(mt — \/g%xgel (6.11)

is the desired solution.



Fig. 6.1
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7.  Further constitutive results in linear elasticity and illustrative examples.

We continue here our discussion of constitutive equations in linear elasticity; and, in partic-
ular, identify the material constants (or the constant coefficients) in the linear constitutive equa-

tions.
In the remainder of this section, we confine attentions to an isotropic solid and recall from
Section 4 the linear constitutive equations
tij = kekkSij + 2peij A (7. 1)

where the infinitesimal strain-displacement relations are given by
o
&ij = —z—(uw +1455) .
The linear constitutive relations (7.1), called generalized Hooke’s law, can be inverted to yield
ejj = %[(1 + V)tij - Vtkksij] . (7.2)

A further useful alternative form of the generalized Hooke’s law can be expressed in terms of the
variables (€, y;j) and (f, 7;;) defined by
ej=6ed%+7Y , Yi=0=>¢e= %eii
. *)
ty =Wy + Tjj , Tii=0=>T= <t
where € is the spherical part of e;; and v;; are called the derivatoric part of the tensor e;;. A paral-
lel terminology holds for T and tj;. The third and fourth conditions in (*) above imply that

E% =e¢;and T = %tii. With the use of the unique decompositions (*), it can be readily shown
that the linear equations (7.2) can be expressed as

Tij = 2”’YU ) t=3ke . (73)
The linear stress response of an isotropic, homogeneous, elastic solid is thus seen from

(7.1) - (7.3) to be characterized by two constants, i.e., either by (A, p), or (E, v), or (k, p) which

are identified as follows:
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A, 1, Lamé constants
u, shear modulus
E, Young’s modulus
v, Poisson’s ratio

k, bulk modulus

The relationships between the above coefficients are indicated in the attached table.

In the rest of this section, we obtain some simple exact solutions using the above constitu-

tive equations and the equilibrium equations
tjj=0

1. Simple tension

(7.4)

Consider a right cylindrical bar with its axis along the e; direction subject to uniform nor-

mal tractions of magnitude T on its ends and zero traction on its lateral surface, as shown in Fig-

ure 7.1.

The stress field

t;j =t =tz =t =1t3=0, t33=T = constant

(Z2:5)

satisfies the equations (7.4) and the stated boundary conditions. There is a uniqueness theorem

in linear elasticity which guarantees that a stress field satisfying (7.4) and the traction boundary

conditions is the unique solution of a given problem. Thus, the stress field (7.5) is the unique

solution to the problem. The strain components are then calculated to be

Y Y
en=en=-fl,e3=x, eip=¢ep3=¢€;3=0.

Thus, the elastic constants may be determined by

€ €

€33 €33 €33

(7.6)

(1.7)

Using physical reasoning, we expect that for T > 0 (i.e. tensile stress) the bar should become

longer and thinner, thus
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e11<0, exn<0,e;3>0. (7.8)
Thus, from (7.7) and (7.8), we conclude that
E>0 and v>0 . (7.9)

2. Simple shear

Consider a cube subject to uniform shearing tractions on two pairs of opposite faces, all
other faces being traction-free (see Fig. 7-2). Suppose that the shearing tractions are applied as

shown on the faces with unit normals +e; and +e,. The stress field
tp=t1=T , ty=ti3=tn=1t33=0 (7.10)
satisfies the equations (7.4) and the stated traction boundary conditions. Hence, it is the solution
of the problem (from the uniqueness theorem). The strain components are calculated to be
e1z=-§TE , ej=ep3=ep=epn=ey=0. (7.11)
Recall that 25 is equal to the shear angle ¢. Thus, (7.11) may be used to determine p as

w= % : (7.12)

Using physical reasoning, we expect ¢ > 0 for T > 0. Thus, we conclude from (7.12) that
u>0 . (7.13)

3. Uniform hydrostatic pressure

Consider a body subject to uniform hydrostatic pressure t =—pn at every point of its boun-

dary. The stress field
tij = —pd;; (7.14)

satisfies the equations (7.4) and the traction boundary conditions. Hence, by the uniqueness

theorem, it is the solution to the problem. The strain components are calculated to be

Cij = —psij(ﬁ) = —3%(-811' . (7.15)
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Thus,

ei,-=——£— or kb'&% . (7.16)

Recall that e;; is the local volume change per unit of original volume. Hence, for p >0 we would

expect that the volume decreases, or e;; < 0. thus, we conclude from (7.16) that

k>0 . (7.17)

So far, we have concluded by physical reasoning that
E>0,v>0, u>0,k>0. (7.18)
Recall that A = 3kv/(1 + V), so that using (7.18) we must have
A>0 . (7.19)
Recall that k = E/3(1 - 2v). Since E >0 and k > 0, we conclude that
v<1/2 . (7.20)
Again, since v = (E — 2pn)/2p, E > 0, and p > 0, we conclude that

v>-1 . (7.21)
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1
F/(E-3AJZ4BAE I/ CER T8 [ (BT 43
e X{;-Zv) A(1-2v) (1+v) A(1+v)
v v 3v
Ak 3(k-2) 9 (k-A Y |
2 3k=-X 3k=A i
u,E 2u-E E-2u N3
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2pv u(1+v) |
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i,k 3k-2u 9K 3k-2u |
3 3k+y 2(3k+u)
Ev E E
Ev | TRy 2Z0+) 3(T-2v)
E.k | 3Kk(3k-E 3KE 3K-E
’ 9k-E 9k-E 6k
3kv 3k(1-2v
vk 3y —meyl 3Kk(1-2v)
TABLE 1
Relationships between the various material constants in linear isotropic
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8. Saint-Venant torsion of a circular cylinder.

For convenience, we summarize here the basic equations of linear elasticity in the form

tiij + Pobi =0, (8.1)

tij = Aeyk Sij + 2ueij - (8.2)
where

= 5+ ;) - (8.3)

The equations (8.1) - (8.3) constitute a system of fifteen equations for the determination of the
fifteen quantities tj, e, u; (since we’ve imposed the consequences of conservation of angular
momentum t;; = t;;). In addition, boundary conditions must be specified either in terms of trac-

tions or displacements at every point of the boundary of the body.

We consider in this section simple solution of (8.1) - (8.3). Thus, consider a circular
cylinder of length / and radius a with one of its bases fixed in the x| — X, plane (see Fig. 8.1). At
x3 = [ let the cylinder be subjected to a resultant moment (or torque) M = Me; and no resultant
force (F = 0). For equilibrium, the resultant torque at x3 = 0 has opposite direction to that at
x3 =1 and is given by —M. It should be clear that the solution for the stresses must satisfy the
conditions that (i) the lateral surface of the cylinder is free from stress and that (ii) the stress at

X3 = [ must give rise to a resultant moment M = Mes and zero resultant force.
Utilizing a semi-inverse procedure, assume a solution of the form
u=0, uy=orz , u,=0 (8.4)

where o is the angle of twist per unit length and (u,, ug, u,) are the displacement components
referred to cylindrical-polar coordinates (r, 6, z). The components of strain referred to this coor-
dinate system are (see Appendix to Part III)

O = 859 = O = 00 = €5 =0 ,

o = 50T . (8.5)

It follows from (8.2) and (8.5) that all stresses vanish except tg,, i.€.,
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tr=tg =tz =top=1tz=0,
tgz = pour . (8.6)
In the absence of body forces, the solution (8.6) satisfies the equations of equilibrium identically.

On the lateral surface of the cylinder the boundary condition is

t= tijnjei| e 0, onoR; . (8.7)

r=
Since on 0K ; the unit normal n = e, has no component in the 6-direction and the z-direction, the
stress field (8.6) identically satisfies (8.7). It remains to examine the boundary conditions at the

ends. In particular at x3 =/ we must have

[ xxtyda=M, [ tda=F=0, (8.8)
OR. R,

where
n=e, , da=rdrd0
t = t,e + tg€g + t5€, = tg€p (8.9)
x =re, + le, , e, =cosOe; + sinbe; .
With the solution (8.6), it can be readily verified that (8.8), is satisfied and that (8.8); gives
M= pal , I=—72t—a4 . (8.10)

I being the polar moment of inertia of the cross-section. The result (8.10) determines the con-

stant o in terms of M and then the displacements are known.
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Appendix to Part III (Secs. 5-8)

This appendix provides details of transformations of some of the basic equations from a
rectangular Cartesian coordinate system X;= (Xj, Xp, X3) to cylindrical polar coordinate and

spherical polar coordinate systems.
A. The basic equations in cylindrical polar coordinates.

We recall that cylindrical polar coordinates (r, 6, z) are defined by the transformations (see

Fig. A-1):
X1 =rcosh, X, =rsinf, x3=2 . (1)

The inverse of the relation (1) is given by
r= x12+x22,9=tan“1(§—?),z=X3 . (2)

Let (e,, e, €,) be the unit base vectors associated with (r, 8, z) coordinates. Then, we have

s 0 3
e, cosd sinb 0| |,
eg| =|—sin® cos® 0| |e; 3)
€z 0 0 1| |©3
and
e cosh —sinb 0 |¢
e;| =|sin® cos® 0| |ep| . (4)
€3 0 0 1 €z

Consider now a scalar field f = f(x;, X3, X3). In view of (1) fis also a function of (r, 6, z). If

f and its derivations are continuous, then by the chain rule we have

of _of or  of 06 , of oz
x| Or 0x; 00 0x; 0z OX|

_of_ i _of X
L NxZ +x2 0 (x7+x3)
=%c056——gg—81?9 5 (5)
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and similarly

of

A - —551 e+_g_g_cose of _ of (6)

» 0x3 Oz

Recall the definition of the gradient of a scalar field referred to rectangular Cartesian coordi-

nates, namely
grad f = Vf= %ei . 7
With the use of equations (4) - (6), we may write (7) as

grad f= (—%fcos(-) -aa—g- sind

) (cosB e, — sind eg)

of cosO
r

+(ZLsing + OF €99 )(sing e, + cosd eg) + Le, (8)

—%f;er+——gef;ee+ a—ez .

Consider now the vector field w = w(x;, X,, X3) which is also a function of r, 6, z. Referred

to the basis e; and then again to (e, eg, €,) the vector field can be expressed as
W = Wje; = W&, + Wg€g + W€, , 9)

where the components (w;, Wg, W,) of w (also called "physical components") are given by

W, cosO sin® 0| | Wi
wp| = |—sin® cos® 0| [wy| , (10)
Wz 0 0 1 w3

or
wi cosO —sin® 0 | Wr
ws| = | sin® cos® O [wp| . (11)
w3 0 0 1] |w,

Recall now the definition of the divergence of a vector field referred to Cartesian coordi-

nates, i.e.,
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divw:V-w=wi,i=%‘,’%i . (12)
1

With the use of (4) - (6) and (11), (12) may be written as

divw= —%(wrcose — Wpsin®) + —Ua)a(—z(wrsine + wgcos0) + %

smO 0

= cose—%(wrcose — Wpsing) — (wrcose Wgsin®)

cosG 0

z

(wrsme + wgcos0) + é‘%—

+ smGE(wrsmG + wgcos0) +

= EtT Tt (13)

In exactly the same way we could find expressions for the curl, Laplacian and material deriva-

tive, i.e.,
ow, Ow, 0 oW,
curlw=V xw= (1—59— e) +( az - arz)ee (i%—we—)—L—a-e—)z (14)
1 1 02f | 0%
V=V - (Vf)——-ﬁ( )+ 252 T 52 (15)
. %

where in (16) f= f(r, 0,z t) and (v;, vg, V,) are the components of velocity.

We also record here the components of various kinematical and kinetical quantities referred

to cylindrical polar coordinates, (r, 6, z). Corresponding to the rate of deformation tensor

we have



ov; Ov ov, A%
du= (G + 50) > =170+ (17
1 0vz 1 Ovg 6v

do=2r 70 "2z > 92"
Note that in linear elasticity the components of the infinitesimal strain are
B P
Cjj = 7(u1J + u_],l)

so that the form of equation (17) is also appropriate for the components of the strain e, e, etc.

if we replace v with u and d with e.

The equation of conservation of linear momentum in rectangular Cartesian components
tij € + pbie; = paje;
may be written in cylindrical polar coordinates as

5tr95trztrrtee

ar L R + pbr = par

Oto 1 Dtes Ot

_§ - —5%9 —59—2 + ztre + pbg = pag (18)
Ot, 10ty Oty 1 _

T8 Tz T it Pb=p2

where (a,, ag, a,) are the components of the acceleration and ty, g, etc. are the components of

the stress tensor. The stress vector can be expressed as

t = tjn;e; = (teDy + trgng + tn e, + (19)

(torhy + togng + tonz)eg + (tN; + teNg + t05)€; .
In terms of the components of velocity (v;, Vg, v,) the components of acceleration are

_ ov; . Vo, 0V; ovy | Ov;
a=vig + 5 (gg ~VO Ve t o

ag = Vr‘oT + _(_5? +v) + vz-a—9 %’tﬁ (20)
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v, Ve dv, OV, OV
L=V T Ve TR

B. The basic equations in spherical polar coordinates.
We recall that spherical polar coordintaes (r, 6, ¢) are defined by the transformations (see
Fig. A-2):
X =1 cosO sing , X, =rsin6 sing , X3 =rCos} . (21)

The inverse of the relations (21) is given by

Vx2 + x2

r=Vx2+x2+x? , e_tan—l(—) ¢=tan-1(—‘x—3£) . (22)

Let (e,, eg, €y) be the unit base vectors associated with (r, 6, ¢) coordintaes. Then, we have

e, cosO sing sind sing  cosd e
eg| =| -—sind cosO 0 el . (23)
€ cosO cosd sinf cos¢p -—sing| | €3

Then for a scalar field f = T‘(r, 0, z, t) we have
grad f= B'r_er : %% + ﬁ%ﬂ—gg—eg (24)

21 0 (20 1 &f
V= o S5 r2s ¢“c>$(sm¢3$ sin2g 002 (&)

. of of of Vo of
=& &t _Q% rsingp 00 - (26)

where in (25) the quantities (v, Vg, V¢) are components of the velocity. For a vector field

w = w(r, 0, §) we have

1 o(r*wy) tud O(wysing) 1 Owpg

divw= > —5—*Tsmp 06 ' remp 0P (27)
curl w = r—s}w{—a%(wesind)) = %N-gd’}e, 28)

oW, r
+ ok o~ L voyep+ T - e
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Corresponding to the rate of deformation tensor, we have

_ v £ Vo
de= i dy= 5D+ 7976
» 1 Ov; r 0 ,Ve 1 ov. Vr
do=2rsmp o0 T Tor T ) =t T (29)

0 Vi
dgo = %nrﬁ% smd)) 2rsm¢_6§£ doo = +5in mp o0 "t T

The equations of motion are,

é‘t 6tr9 1 6tr¢ 2t — tog — oo + tr¢c0t¢
r s1n$ 0 trep T r P i
Otrg 1 Oteg . 1 Otgy , 3t + 2tggcotd =
2t " Tsing 0 TTrop T r ¥ = (30)
5‘t 1 6t9¢ 1 ot o 3tr¢ + (t¢¢ — tgg)cotd _
—'Wrsm 0 T T _5%-" 5 + pbgy = pay

where (a,, ag, a¢) are components of acceleration and ty, tg, etc. are components of the stress ten-

sor. The stress vector can be expressed as

t = (tn, + trgng + trtbntl))er + (torny + toong + te¢n¢)ee
+ (t¢rnr + tyong + t¢¢n¢)e¢ . (31)

In terms of the components of velocity (vy, Vg, V¢) the components of acceleration are
ovy Vg, 0V Vg OV . ov
&=V + 7G5~ 0+ Tamp (o~ vosind) + o
\4 ov. . ov
ag= Vr_ﬁ_ + 2 (7%— + vgeotd)) + ﬁieﬁf(_aﬁe + v,sind) + —We (32)

ov ov ov ov
a¢ = VrﬁL + 'let(?f + VI‘) + r_SVing(?—ét - VeCOS(b) + ﬁl .
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Supplements to the Main Text

ME 185 Class Notes
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Supplements to the Main text in Class Notes

Rather than writing expressions in terms of components of vectors and tensors, it is some-
times convenient to use a coordinate-free notation. In coordinate free notation, a vector is
referred to by the symbol v, whereas in indicial notation this vector is written in terms of its
components v; with respect to a basis ;. The values of the components v; are dependent on the
choice of basis. Similarly, a tensor may be referred to in coordinate free notation as T or in indi-
cial notation as Tj; with respect to a given basis. Notice that tensor multiplication is not commu-
tative; however, the components of a tensor in indicial notation are commutative. The following

relationships between indicial and coordinate free notation are sometimes useful:

Coordinate Free Notation Indicial Notation
v (a vector) Vi
A (a second order tensor) Ajj
Av Ayjv;
ATy A,
AB ™
ATB N
ABT ABy

Examples from kinematics:
C=FTF Cap =FiaFip
B =FFT Bjj = FiaFja
U2=C UapUpp = Cap
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Eigenvalues, eigenvectors, and characteristic equations.

In general, a second order tensor T operating on a vector v results in another vector w (say)
which is not necessarily in the same direction and does not necessarily have the same magnitude

as v. This operation is expressed symbolically as

Tv=w or Tijvjzwi . (1)

However, if a nonzero vector v is such that when T operates on it the resulting vector w is paral-

lel to v, then v is called an eigenvector of the tensor T.

In this case, we can write

Tv=pv or Tyvj=Pv;, 2

where the scalar B is called an eigenvalue corresponding to the eigenvector v. From (2), we can

write

(T-BDv=0 or (T;-Bdyv;=0, 3)

where I is the identity tensor. Equation (3) represents three equations which must be satisfied by
all three components of v in order that v be an eigenvector of the tensor T. According to a
theorem of linear algebra, a homogeneous system of three equations for three unknowns (such as
equation (3)), has a non-trivial solution if and only if the determinant of the matrix of

coefficients vanishes, i.e. if

det(T—BD)=0 or det(T;—Bd;)=0. 4)

Equation (4) represents a cubic equation in 8, which may be written as

oPB)=-B3+Lp2-LB+13=0. (%)

Equation (5) is called the characteristic equation of T and I; , I, , and I3 are called the principal

invariants of T. Expressions for the principal invariants can be obtained by solving the system
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(4), giving

I =trT I =Tj
I, = —%—(trzT = tl‘Tz) or L= %‘(TiiTjj = TijTji) (6)
I, = detT Iy = det(T;)) = %—sijkslmnTlijTkn .

In general equation (5) has three roots which are not necessarily real and are not necessarily dis-
tinct. However, in the special case where T is symmetric, we can prove some additional

theorems.
Theorem 1: If T is symmetric, then all the roots of the characteristic equation (5) are real.

Proof: We will prove this theorem by contradiction. Suppose first that the roots of (5) are not
real. According to a theorem of algebra, the complex roots of a polynomial with real
coefficients must occur in conjugate pairs. Therefore, if there exists a complex root B(1) of
(5), then there must also exist a root B@ of (5) which is a conjugate of (). Thus B()) and

B3 must be of the form

B = p+iy
pA =p-iy, @

where i2=—-1. The eigenvectors which correspond to the eigenvalues B(1) and B are of

the form
viD = + 18 viD = o + i8;
or (8)
v® =q-i8 v =o;-i5; .

Since equation (2) must hold for all eigenvectors and their corresponding eigenvalues, we
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can write
Tv(D) = B(l)v(l) Tijvj(l) = B(l)vi(l)
or ©
Tv® = BV Tyvi® = BV |

Multiply (9); by v{?) and (9), by v{!) to obtain (in indicial notation)

BV = Tyvvi

BOVAVD = TijVJ(Z)vl(l) = Tjivj(Z)vi(l) = Tijvj(l)vl(Z) . (10)

In obtaining (10),, we have made use of the facts that Tj; is symmetric and that i and j

are dummy variables. Subtracting (10), from (10); gives

(B — B@)v{Dy; @ =0 (11)

Substituting (7) and (8) into (11), we can write

0 = 2yi(ay + i8;) (oy — i8) = 2yi(oyoy + & &) . (12)

The term in parenthesis in (12) is always greater than zero since it is the sum of two
squared real numbers. Therefore, we must have y = 0. Equation (7) then implies that
B and B@ are both real, which is a contradiction of our initial assumption. We can
therefore conclude that if T is symmetric, all the roots of its characteristic equation are

real.

Theorem 2: The eigenvectors which correspond to distinct eigenvalues of a symmetric tensor

are orthogonal.
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Proof: Suppose that v(1) and v() are eigenvectors of a symmetric tensor T corresponding to dis-
tinct eigenvalues B(D) and B®, i.e. B() = (). As in the previous proof, we can show that

equation (11) must be satisfied. Since B()) = B, we must have

viD v =0 or v{lv@=0. (13)

Equation (13) is exactly the definition of orthogonal vectors, thus the eigenvectors v(!)

and v(2) are orthogonal.

Theorem 3: Every second order symmetric tensor has three linearly independent principal

directions.

Proof: For the proof of this theorem, see Advanced Engineering Mathematics, Wylie, p. 541.

Remark: In the preceding development, we can, without loss of generality, replace the eigen-

vector v with a unit vector m, where

m=v/|v] . (14)

The vector m is called the normalized eigenvector.

Using theorems 1, 2 and 3 and the previous remark, we can state that any symmetric tensor T
has three real eigenvalues B(1),B@, and fG) and three orthonormal eigenvectors
m() , m® , and m®. It can be shown, using a theorem of linear algebra, that since T has three
linearly independent eigenvectors, it can be transformed into a diagonalized form, denoted by

A, using the transformation

Ti'j = Aij = a-miaanmn 5

where

;=€ " m0 and Xj= ainj' . (15)
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Here the primed quantities correspond to the transformed system. It can also be shown that the

diagonal members of A are simply the eigenvalues, so that

B 0 0
Ap=|0 p@ 0 | . (16)
0 0 pO

Quadratic forms and positive definiteness.

Associated with any symmetric second order tensor T is a scalar valued function of a vector

Q(V), where v is an arbitrary vector, defined by

Q(V) = (TV) V= Tij Vivi= \ (TV) . (17)

We call Q(v) a quadratic form. The tensor T is said to be positive definite if for all
v#0,Q(v)>0.

Theorem 4: A symmetric second order tensor T is positive definite if and only if all the eigen-

values of T are positive.

Proof: Again using a theorem from linear algebra, one can conclude that since the eigenvectors
m(), m® , and m® are orthogonal in a 3-dimensional space, then any arbitrary vector w
in that space may be represented as a linear combination of m()) , m® , and m®. Thus, we

can write

w=a;m® + a,m? + a;m® . (18)

The eigenvalues of T corresponding to m() , m®@ , and m® are V), B? , and B, as

before, so equation (2) gives

Tm0 = BOm® . (19)
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Using (18) and (19), we can write

Tw = alﬁ(l)m(l) + azﬁ(z)m(z) + a3B(3)m(3) . (20)

Substituting (20) into (17) gives

Q(W) = Tywjw; = a2B1) +a2B@ +a280) . (21)

Necessity: If T is positive definite, then Q(w) > 0 for all w. Since a; , a, , and a3 are all real
numbers, the square of each of these terms must be positive (or zero). If w= aym(D, then
Q(w) > 0 implies from (21) that [3(1)al2 > 0, or that () > 0. Since w is arbitrary, a similar
argument shows that B and B(® are both greater than zero. Thus, if T is positive definite,

then all the eigenvalues of T are positive.

Sufficiency: If all the eigenvalues of T are greater than zero, then by (21) it follows that
Q(w) > 0 for all w # 0. Therefore, T is positive definite if all the eigenvalues of T are posi-

tive.

Theorem 5: If B is a positive definite symmetric tensor, then there exists a unique symmetric

positive definite square root T of B such that T? = B.
Remarks on the calculation of the positive definite square root of B:

Let Bk = ajpaxqApq (see (15)), where A is a diagonal matrix as in equation (16). Define a

1
tensor A %, as

1 \/EZB 0 0
AD)pg=]0  VB® 0
0 0 o

~

H

so that
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Lo
AZ A% = Aps . (22)

Defining Tj; = aipaquTPq, we can show that

1 1 11
N e - 2 A2
T;jTik = aipajq A *pq@jm@kn/A “mn = 2ipdjqdjmkn pg/A “mn

11
= aipaanqm A-z;qA_fmn = aipaknApn = Bik

or

T2=B. (23)
Theorem 6: Polar decomposition theorem (see class notes section I/3)
Any non-singular (invertible) tensor F may be uniquely expressed as
F=RU=VR, (24)

where R is orthogonal and U and V are symmetric positive definite tensors.

Proof: Existence

1
Define U = (FTF)7 and R = FU-!. We first show that U is symmetric postive definite.

To show that U? is positive definite, consider the quadratic form

Qv)=v:-U2v=v -FTFv=Fv-Fv.

Since F is invertible, then Fv # 0 if v # 0. Assuming that F and v are both real, it fol-
lows that Q(v) >0 if v=0. Thus, U? is positive definite. Also, since FTF is sym-
metric, then U2 must be symmetric. From theorem 5, we know that U? must have a
unique positive definite square root U, where U is also symmetric. To show that R is

orthogonal, note that

R™R = (U-)TFTFU-! = U-'FTFU-! = U-1UUU- ! = 1.
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Using the definitions of U and R, we can write

RU=FU-'U=F.

Thus, we have shown the existence of the decomposition (24).

Uniqueness

To show uniqueness of the decomposition (24), assume first that two such decomposi-
tions exist, so that F = RU=R"U". The star is used here to denote an alternative

decomposition. Notice that

FTF = UTRTRU = U2
and

FTF = U'TR*TR*U* = U2,
thus U2 = U*2. By theorem 5, the square roots of U2 and U*? are unique, so we must
have U = U*. Notice that

0=F-F=RU-R'U"=(R-R"U.

Since U is non-singular, U~! exists. Thus,

0=(R-R"HUU'=R-R",

and so R = R*. Thus, the decomposition F = RU is unique. Similarly, one can prove
the existence and uniqueness of the decomposition F = VR, where we temporarily
allow R to be different from R. The relationship between V, U, R, and R may be

determined by observing that

F=RU=(RURDR=VR,

where RURT is symmetric and positive definite. Since the decomposition of F is
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unique, we conclude that

V=RURT, R=R, and U=RTVR. (25)
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Extremal properties of quadratic forms.
Consider the symmetric tensor T and the quadratic form
Q(V) =v - Tv=Tyvy;. (26)

We wish to know the extreme values of Q(v) subject to the constraint that v be a unit vector

(.e.v-v=v;vi=1). Using the method of Lagrange multipliers, the conditions for the

extremum of (26) are

22 {Tyvivi = Bvvi= 1} =0, @7

where B is the undetermined multiplier and v - v —1 =0 is the constraint equation. Performing

the differentiation, (27) becomes

Tijsiij = TijViSjk —2Bvi8ik =0

or
Tijj + Tivi — 2Bvi = 0. (28)

Since T is symmetric, (28) becomes

Tijj . BVk =1, (29)

Therefore, Q(v) attains extreme values when v is a eigenvector of T. Using (2), it is clear that if

m is a unit eigenvector of T with corresponding eigenvalue B, then

Q(m)=m - (Tm)=p. (30)

In summary, the quadratic form obtains its extremum values when it is operating on an eigenvec-
tor. If the eigenvectors are normal, these extremum values are simply the corresponding eigen-

values.
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Relationship between eigenvalues of U, C, V, B, E, and D and the principal stretch.

(see class notes Sections 1/4 and I/5)

The principal directions are the directions in which the stretch attains an extreme value.
The principal stretch A is the extreme value of stretch in a given principal direction. As derived
in section I/4, the eigenvalues of Uand V are equal to the principal values of stretch and the
eigenvalues of C and B are equal to A2. It was also shown in this section that the eigenvectors of

U and C are coincident and that the eigenvectors of V and B coincide.

The relative strain tensor E is given by

E=+(C-D. (1)

The principal values of strain, denoted by B, are equal to the eigenvalues of E. The principal

directions of strain, denoted by m, are equal to the eigenvectors of E. From (2), we have

Em =f3m . (32)
Substituting (31) into (32) gives
1(C-Dm=pm,

or

Cm=2B+ )m. (33)

Equation (33) implies that m is an eigenvector of C as well as of E and that 2 + 1 is an eigen-

value of C. As previously noted, the eigenvalue of C is A2, so

B+1=22 or B=—%—(x2—l). (34)
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Thus, the eigenvectors of U, C , and E coincide and the principal value of strain is related to the

principal value of stretch by equation (34).

As was derived in section I/5, the eigenvalues and eigenvectors of the rate of deformation

tensor D are given by

Dm=%m=%ﬂan, (35)

where m is an eigenvector of D, (m is also called the "principal direction of stretch"). It is clear

from the form of (35) that ey (called the logarithmic rate of stretching) is an eigenvalue of D.

Example
Suppose that at some instant at a particular point in the body, the deformation gradient ten-

sor F is given by

[Fial = (36)

—_—oO

1
2
0

S =N

Notice that (36) yields a symmetric positive definite tensor. Since the polar decomposition of F

is unique, it follows that V=U =F and R =1. The principal invariants of F = U are

I;=rU=Upp =5
I, = _é_(trzU - trU2) = "é_(UAAUBB - UABUBA) =7 (37)
L=detU=3.

The characteristic equation of F is then

—B3+5p2-7B+3=0. (38)

The roots of (38), i.e. the eigenvalues of F, are

B =3
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@ =1 (39)
BO=1.

To solve for the eigenvectors of F, substitute each of the eigenvalues into equation (2), or

Fv=pv. (40)

For B(D = 3, equation (40) gives

(F-3DMD =0,

or

- Ml(l) + M?f‘) =0 and —2M3(1) =0.

Thus, the eigenvector M(D is given by

1
M®D]=¢|1 |,
0

where ¢ is an arbitrary constant. Similarly, for B® = B = 1, equation (40) gives

(F - DM@ =0

where a = 2,3, or

M@ =-M{®.

Solving for M(®) gives

-1 0
M®]=c, | 1 | and [M®]=c; |0
0 1

We may take unit eigenvectors
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I I | M o L ; (31 =
M 1], M 1|, [MP)] Ol
[ 1 ] = [ 1 ] = [ 1 1

which form a right-handed triad. Note that every vector in the space spanned by M) and M)

is also an eigenvector with eigenvalue 1.

One can better understand the physical significance of these results by looking at the effect
of the deformation (36) upon a unit cube. The graph below gives the cross section of the cube
before and after the deformation. As expected from the preceding calculations, the principal
directions (i.e. the directions in which the stretch attains extremum values) are in the directions
of the eigenvectors M(), M@ , and M®). Line elements along M() are stretched to three
times the initial length. Thus, the stretch A = 3 is equal to B(1), as expected. Line elements in the
directions M® and M®) retain their initial length. Therefore, the stretch A in these directions
equals unity, corresponding to B =BG =1. In this example, line elements along principal
directions undergo pure stretch as a result of the deformation; however, line elements in other
directions may undergo both stretch and rotation. This characteristic is true in general whenever

the deformation F is of the pure stretch type (i.e. whenever R =I).
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Supplement to Part I, Section 5
Material line elements, area elements, volume elements and their material time derivatives.

Preliminary results

Claim:

det A= % EijkEmnAfAmjAnk (1)

Proof: Consider an arbitrary tensor A with components Aj. Let ap=Api, by =Amn, and

Cm = Ams. Recall that

Ay Ay Az
a- (b x €) = €mnadmCn = EmnAn1Am2AN = det | Ay Ay Ajzp| =det AT=A. 2)
Az Az Ass
Now define Tijk by
Tijk = €mnAnAmjAnk 3)

where by (2), Ti23 = A. Since /, m, and n are dummy indices, we may switch them and use

the properties of €y, to show that
Tiik = Tjki = Tij = — Tiig = — Txji = — Tk - 4)

Recalling the properties of &jji, we can conclude from (4) that Ty, must be a multiple of &;.

From (2) and (4), we see that

Tr31=T312=Ti23=A
T3 =Taz=Ti2=-A
Ty=0if i=j, j=k, or i=k.

Hence, it is clear that

Tijk = A Eijk - (5)
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Equate (3) and (5) and multiply the resulting equation by % &ijk, noting that g;rg;x = 6, to

get
A =det AT= %— SijkslmnA[iAmjAnk .

Since det AT = det A for any tensor A, we have proved equation (1).

Claim:

At A) _ (et A) AT

Proof: Assume that the components of A are independent, so that we can write
A
m;us‘ = 8irsjs .
Now differentiate (6) with respect to A to obtain

a(g‘ifr?) - 6625 - % EijkEimn {OrOsiAmjAnk + AsiOmOsjAnk + AiAmiOmOsk

= %{SsjksnnnAmjAnk + €igk€imA ANk t Eijs€imrAiAmj)

-1 {3gsjk8rmnAmjAnk} = lgsjksrmnAmjAnk .
6 2

(6)

(7

®)

)

Suppose now that A is non-singular (det A # 0), so that there exists a tensor B with com-

ponents Bj; such that A;Bj, = 8. If this is the case, then (9) may be rewritten using (3) and

(5) as

—aaA% = % €sik(E/mnOr) AmjAnk

= —lf &sjkEmn(AsiBir) AmjAnk
= -17 Esik(EmnAfAmjAnk)Bir

= —;— &sjk€ijkABir = %(2ABsr) = AB,; .

Denoting B as A-T, equation (10) becomes

(10)
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d de;A —AAT=(detA) AT,

which is identical to (7).
Material line elements

Consider a motion of a body B given by x = (X,t), where X is the position vector of a cer-
tain particle in the reference configuration and x is the position vector of the same particle in the
current configuration at time t. Two neighboring material particles in the reference configuration

are located at X and X + dX. Consider a material line element dX in the reference configuration

at the point X and having length dS and direction M, so that dX =dS M. Under the motion
x(X, t), the material particles X and X +dX are taken to the positions x and x +dx. The
corresponding material line element dx in the current configuration having length ds and direc-

tion m is related to dX by
dx=FdX s Ok dXi=FiAdXA=Xi,AdXA, (11)

where Fj5 = x; o are the components of the deformation gradient F. A diagram of this motion of
the material line segment is given below. Recall from Section I/4 of the class notes that the

square of the length of a material line element in the current configuration is given by
ds? = x; aX; pdXadXp . (12)
Recalling that )?1—,; = VjjXj,A, We can take the material derivative of (12) to get
ds? = x; axi pdXadXp + X, aX; 5dXAdX5
= v; jXj,aXj,BdXAdXp + Xj AV %;,8dXadXp
= (Vij + Vj,)Xi,aX;,BdXAdXp
= 2d;jx; aX;BdXadXp . (13)

This last step uses the definition of the rate of deformation tensor D = %(L + LT). Equation (13)

may be rewritten using (11) as
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ds? = 2d;jdx;dx; . (14)

Material area elements

Let !dX and 2dX represent two material line elements in the reference configuration located
at X. Suppose that the motion g (X,t) takes 'dX, 2dX into the elements !dx, %dx, respectively, at

x in the current configuration. Define the material area element dA with orientation N in the

reference configuration by

N dA = 1dX x 2dX (15)
so that

dA; =N dA =N dA - ep = (1dX x 2dX) - ep = gpmn 'dXm 2dXy (16)

The corresponding material area element in the current configuration is da with orientation n

(see Figure 2) defined by

n da = ldx x 2dx, (17)
so that

n;da=nda- e = (1dx x 2dx) - ¢; (18)

From (18) and (11) and noting that Xy, pXp ; = Smi, We can write

n da= Siijj, AXk,B 1dXA deB = emijmixj, AXk,B ldXA 2dXB
= Emik(Xm,pXD,)Xj,aXk,B 'dXa 2dXp

= EmjkXm,DXj,AXk,8XD,i !dXa 2dXp .
Using (3), (5), and (16), this expression becomes

n; da = gpap(det F)XD,i 1dX s 2dXg

or

nj da=JXD,iNDdA. (19)
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Assuming that F is non-singular and using (7) and (19), we can write

nmda=JXp;NpdA +JXp;NpdA. (20)
Notice that

jodl o 01 OFA _ y g1y, v Fa =T viadig = Vi 21

—HT—EET_atL— Aj VikEFkA =J VjkOkj =J Vjj - (21)

Using (21), equation (20) becomes

njda=(J XD,iVj Jj= J XD,jVj,i)ND dA

or

nj da= J(Vj,jXD,i = Vj,iXD,j)ND dA. (22)

Material volume elements

Let !dX, 2dX, and 3dX be three material line elements forming a right handed system
located at X in the reference configuration. Suppose that the motion , (X,t) takes !dX, 2dX, and
3dX into three line elements 'dx, 2dx, and 3dx, respectively, at x in the current configuration (see

Figure 3). Define the material volume element dV in the reference configuration by

dV = 1dX - (2dX x 3dX) = gppc!dX, 2dXp 3dXc . (23)
The corresponding material volume element in the current configuration is then

dv = Idx - (3dx x 3dx) = gjj 'dx; 2dx; 3dxy . (24)
Using equations (3), (5), (11), and (23), we can write (24) as

dv = eipxi AXj BXk ' dX 4 2dXp 3dXc = gapc(det F) 1dX, 2dXp 3dXc

= J(eapc 'dX4 2dXp *dX()

or

dv=JdVv. (25)
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Taking the material derivative of (25) gives

dv =] dV =T vjdV = J(div v)dV, (26)

where equation (21) is used for the calculation of .

A special case of the above analysis occurs for isochoric motions (i.e. motions for which

dv =dV for all volumes occupied by any material region of the body). It is clear from this
definition that dv = 0 for isochoric motions. We see from equations (25) and (26) that the neces-

sary and sufficient condition for isochoric motion may be expressed either as
J=1 or vjj=divv=0. (27)

Summary
A summary of the basic equations derived in this appendix are given in the following:

Material line, area, and volume elements:

ds? = Xi, Axi,BdX AdXB
n; da=]J XD,i ND dA

dv=JdV

Material derivatives of line, area, and volume elements:
ds2=2 djjxi, AXj,BdXAdXB
dai = J(Vj JXD,i = Vj,iXD ’j)dAD

dV=JVjJ'dV.
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Supplement to Part I, Section 7

Interpretation of infinitesimal strain measures.

Recall the following expressions:

ds? = dx;dx; = x; AXj gdXadXp = CApdXadXp

d82 = dXAdXA = XA,iXAJdXide = cijdxidxj
EaB = %‘(CAB —0AB) = %‘(UA,B +Uga + Um,aUm;B)

ejj = -17(5ij —cij) = ‘é‘(ui,j +Uji — U iUm) -

Also recall that the stretch A and the extension E are defined by

A= g—sg = \/CABMAMB = \/17+2 EABMAMB

= 1/\/cijmimj =1A1- 2¢;mym;
and

_ds—dS _, _
E—T_x 1 ’

where

MAMA=mimi=1 and dXA=MAdS ) dxi=mids .

(1

(2a)

(2b)

3)

For an infinitesimal deformation (see class notes Part I/7), we may approximate Exp by neglect-

ing term of O(g2) as € — 0 as

Eap=5(Uap+Upa) =O0() as 0 .

4

The distinction between Lagrangian and Eulerian strain disappears for an infinitesimal deforma-

tion. Thus,
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Cjj = EABSiASjB = 0(8) as € >0 . (5)

Hence, for an infinitesimal deformation the extension and the stretch given in (2) may be written

as
E=A—-1=EpgMaMp + 0(82) = gjjmym; + 0(82) (6)

and

A =1 + 2EA\gMaMp = | + EAgMaMg + O(&2) (7a)
or, alternatively,

A = N1 - 2e;mim; = 1 + ejmim; + O(e?) . (7b)

In the following discussion, we will use ey, €22, ..., to denote the components of the infinitesimal
strain tensor, since from (5) no distinction needs to be made between Lagrangian and Eulerian

strain as € — 0. Consider a line element which lies along the X axis, i.e.

dX,=dS , dX;=dX3=0 , and M, =(1,0,0) ,

so that from (6)
B= S5 —e . (8)

That is, e;; represents the extension (the change in length divided by the original length) of a
line element lying along the X; axis. We note that to within O(g2), the direction m; in the current
configuration coincides with the direction My in the reference configuration. Similar results
hold for e,, and e3;. In summary: the diagonal elements of the infinitesimal strain tensor

represent the extension of line elements in the corresponding coordinate directions.

Consider two orthogonal elements which initially lie along the X; and X axes, so that

dX;=dS , dX,=dX3=0, Ma=(1,0,0) 9)
dX,=dS , dX;=dX3=0, Ma=(0,1,0) .
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Let 6 denote the angle between the corresponding deformed line elements dx and dx, whose
lengths are ds and ds. From (8), neglecting terms of O(g2) as € = 0, we have
ds=(1+e;;)dS and ds=(1 +e22)d§ . (10)

Now observe that

Ldx | dxgdx dX,dX
cos 9= —dxd¥ _ CXi '=xi,Axi,B—d—:fB

dX,dXp MaMp
dsds.. = (+en)l+en)

= Cio/(1 + e11)(1 + e2) = 2e12/(1 + 11 + €x2) + O(e?)

=2epp + O(e?) , (1)
where we have used (1)3, (5), (9), and (10) in deriving (11).

Let ¢ be the amount 0 differs from a right angle (i.e. ¢ = —8 + n/2), so that

cos 0 =sin ¢ = ¢ + O($3) . (12)
From (11) and (12), we see, after neglecting terms of O(g2), that

b=2ep; or ep=3 . (13)

The angle ¢ is known as the shear angle. Similar results hold for e|3 and e;3. Hence: the off-
diagonal components of the infinitesimal strain tensor are seen to represent half of the change in

angle between two line elements initially along the corresponding coordinate axes.

Recall that dv=JdV, where J = det(x; ). In the class notes Section I/7, it was shown that

neglecting terms of O(e?) as € — 0 gives
J=1+ €kk - (14)

Thus, dv =JdV =dV + e dV, or
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dv—dv _

—m— ekk . (15)

The invariant ey is known as the dilation. Equation (15) implies that the trace of the

infinitesimal strain tensor measures the local change in volume per unit volume.
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Supplement to Part III, Section 2

Isotropic tensors.

Under a rotation of coordinate system, recall that the components of a vector change

according to the rule
X =ajmX'm OF X'm=ajmXj, (1)

where x; are the components of a vector x with respect to one coordinate system and X', are the
components of the same vector with respect to a different coordinate system. The coefficients

aj, are components of an orthogonal tensor such that

ajjaik = ajiak; = Ojx and det(a;) =% 1. 2)
Also recall that the components Tj;_ i of a tensor T transform according to the rule

Tij. k= 2ipajq " akrL'pg.rs (3)
where a;;’s obey equation (2).

Definition: A tensor T is called isotropic if its components are invariant to rotation of the coor-

dinate system. Thus, if T is isotropic, then

Tij.x =Tk
or from (3),
Tjj. k= aipajq ~ - ar Ipg...r 4)

for all orthogonal aj;.

Theorem 1: A scalar invariant is an isotropic tensor of order zero.
Proof: Let ¢ = ¢(x;) be a scalar invariant, so that from (3) ¢(xj) = §(x';)) = ¢'. Since ¢ = ¢/, the

scalar invariant ¢ satisfies the definition of an isotropic tensor given by (4).

Theorem 2: The only isotropic tensor of order one is the zero vector.



- 135 -

Proof: Ift; are the components of an isotropic vector t, then from (4)
t= ajitj (5)

for all components aj; of orthogonal tensors. Consider, for instance, the choice

-1 0
[aj{I = 0 -1
0 0

With this choice for aj;, (5) becomes (t; , tp, t3) = (—t; , —t2 , t3), which implies that t; =0

—o O

and t, = 0. Now consider the choice

1] -
aal =10 —
it 0

for which equation (5) becomes (t; , tp, t3) =(t; , -t , —t3), and so we must have t3=0

0
0
1

o= O

also. Thus, if t is an isotropic tensor of order one, then t = 0.
Theorem 3: Every isotropic tensor of order two is a scalar multiple of d;;.
Proof: Let T;; be the components of an isotropic tensor T, so that from (4)
Tjj = aipajgTpq (6)
for all orthogonal tensor components a;;. Consider now the following choices for a;; and the

resulting forms of equation (6):

0 0-1 Ty Tz Tis T3z T3 -Tx
[aij] =|-1 0 0| sothat T21 T22 T23 = Tl3 Tll —T12 s
01 0 T31 T32 T33 —T23 —T21 T22
and
0 0-1 Ty Tiz Tis Taa =131 T3z
[aij} =|1 0 0| sothat [Ty T Tys| = [-Tyz Ty ~Tpo| . (7
0-1 0 T3 T3y Tss Ty3 —Ta1 T2

In order for (7); and (7); to both be satisfied, we must have

T11=Typ=Ts; and T;3 =Ty =T;3=T3; =Tz =T, =0,
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or
Tjj = A5, ®)
where

A=Ty;1=Tp=Ts.

Theorem 4: Every isotropic tensor of order three is a scalar multiple of the permutation tensor
Eijk-
Proof: Let Tjj be an isotropic third order tensor, so that from (4) we can write
Tijk = aipdjq@ke Tpqr 9)
for all orthogonal a;;. We can represent T;j as
T Tz Tus | Tiar Tizz Tizz | Tz Tizz Tiss

[Tijk] = | Ta11 T2z Taiz | Tao1 Tazp Tazz | Tasr Tazz Tasz
Ta11 T312 Ta1z ' Ta21 Tsop Tapz ' Tz Ts3zp Tass

Consider the following choices for a;; and the resulting forms of (9):

o
ai;| = -1
1 0

-] —T333 —T331 Ts3 | =Tsi3 —Ta11- Tan Tsps Taz =Taxm
0| then [Tijk:l =-Ti33 =T131 Tiz2 | “Tuzs “Tin Tz | Tz Tzt -Tiz
0 Tz Tazi —Taz To1z Tann —Tagz ' —Taaz -Toz1 Tam

— o O

T3z Ts31 Tas | Tsis T Tonn | Tz T3z Tax
then [Tijk:|= Tiss Tzt T2, Tus Tin Tz | Tizs Tzt Tz
Tz Ta1 Toas Ta1z Tann Taz Toz Tapr Tox

—
R
L
|
(= )
Ll = =)
OO =

r [

1 Ts33 Tzzp —Tz31 | T3z Tz —T3pg | -T313 -T312 Tapg
0| then [Tijk] =| Tz Tazz -T2z Tz Tz -Ta | —T213 -T2z Tan
0 =Ti33 =Tisa Tiz1 ' -Tizzs -Tizz T Tz Tz =Tin

(10)

OSO—=O

—
o
=N
Il
S =

From equation (10), we must have

T333=T331=T332=T111=T112
=T120=T133=T211=T233=T311 =T320=T121 =T131 =Ta12 =
=T =T313=T33=0
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and
Ti23=T1=Ta12=-Ts1 =-Ti2=-Ta3 =4,

thus we can write
P R (11)

Sufficiency may also be shown by substituting equation (11) into equation (3), giving
2ipAiqakr Lpgr = ipRig@krhEpgr = AMdet apg)€ijk

which is equivalent to equation (9).

Theorem 5: The most general fourth order isotropic tensor has the form

Tijks = A8;j0xs + UOiOjs + 8Dk -

Proof: Let Tjj; be the components of an isotropic tensor, so that from (4)
Tijkl = aipajqakra'lsqurs (12)
for all orthogonal a;;. We proceed as in the previous proofs, choosing aj; to be

-1 00 1 0 0
[aﬂ: 0-10/ ,/0-1 0 ,
0 01 0 0-1

SO—= O

01 0
00,10
10 1

(= )
SO =

Using the above choices for aj; in equation (12), we can show that the non-zero values of

Tjji are related as follows:

Ti111=T2222=Ts333

Ti122 = Ta211 = T1133 = Ta311 = Taza = Taz3 = A

Ti212=Ta121=T1313=T3131 =T33 = T2 =1

Ti221=Ta112=T1331 =T3113 = Tazz2 =Ta223 = 7. (13)

Now consider the choice

1"2 172 0
{aij] =[-1"2 172 0o
0 0 1

If we substitute this value for a;; into (12) and seti=j =k =/= 1, we find that
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1
Tiin =z (Tun + Toan + Ta121 + T1221 + Tar12 + Ti212 + Trioz + Ta222)

or using (13),

Tin=A+p+y. (14)
From the restriction (13) and (14), we see that Tj;,; can be represented as

Tijks = AS;jOis + UOiOjs + YOirdik - (15)
Sufficiency may be shown by substituting the expression for Tj;; given by equation (15)
into equation (4), yielding

Qipjqakrass L pgrs = aipajqakralso\qugrs + lvlsprsqs + ¥0ps0qr)
= kaipajpakrah + Hajpajqakpdiq < Yaipjqakqdip
= AS;Bk; + MBSy + ¥0idik = Tijk

which is identical to equation (12). If an isotropic fourth order tensor is restricted to have
the symmetry

Tijir = Tiiw (16)
(i.e. symmetry in the first two indices), then from equation (13) we see that y = p. Equation

(15) may thus be written for this special case as
Tijir = A6;ids + r(Bikdjr + dirdik) - (17)

Equation (17) is the most general form for an isotropic fourth order tensor symmetric in i
and j. Notice that the representation given in equation (17) also possesses the additional

symmetries given by

Tijir = Tijae = Ty - (18)
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Supplement to Part III, Section 4

Material symmetry of elastic solids (general considerations).

For a homogeneous elastic solid, the constitutive equation of interest expresses the strain
energy per unit mass as a function of some measure of strain. Thus, let the strain energy per unit

mass y be given by

v =V(Eap) - (1)
We examine the behavior of (1) under a change of coordinates in the reference configuration
given by

Xp=AppX'q »
where

Apg=Ep-E'q and Apy Aqm = Amp AmqQ = Spq - 2
Under the transformation (2), Eag becomes

Epg = Apm Agn E'mn > 3)

where E'ypy are the components of the strain tensor referred to the base vectors e's. Since y is a

scalar invariant, we know that
V=y . 4)

With the use of (1) and (3), the strain energy function after the transformation (2) can be written

as
V' = y(Arm AN E'wmN) (52)
where as before
v = y(Epo) - (5b)
Substituting (5) into (4), we conclude that

W(Epg) = W(Apm Agn E'Mn) = WE'MN) (6)
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where  is in general a different function than \y It is clear from equation (6) that the response
of an elastic solid depends, in general, on the coordinates used to describe the reference
configuration. The symmetry of a homogeneous elastic solid is characterized by the set of
orthogonal coordinate transformations which leave the strain energy function form-invariant;

that is, the set of Apq such that \TJ is the same as \]1, or such that

W(Erq) = W(E'pQ) - (7
If equation (7) holds for all possible orthogonal coordinate transformations (i.e. for all orthogo-

nal tensors Apg), then the material is said to be isotropic.

Linear elastic solids

It was shown in the class notes that, in the linear theory, the strain energy function for a

homogeneous elastic solid may be expressed in the form
PoV = % CaBMNEABEMN (8)

where Cagmn is @ fourth order tensor of material constants which has, in general, 81 indepen-
dent components. Since Eap is a symmetric tensor, the coefficients Cagpy in (8) will have the

obvious symmetries
Casmn = Ceamn = CaBnwM - )

In addition, recalling that the strain energy is a scalar invariant we may write (after changing the

dummies AB into MN and MN into AB)
PoV = %— CaBMNEABEMN = -21- CmnaBEMNEAB - (10)
It then follows that C gy must by symmetric in the pair of indices (AB) and (MN), i.e.,

CaBmN = CmNaB - (11)

In summary, the fourth order tensor in (8) must satisfy the symmetries

CaBmN = Camn = Capnm = CvnaB - (12)
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The symmetry of Capvn shown in (12) allows us to reduce the number of independent com-

ponents of Capvy from 81 to 21. The remaining independent components are

Cii1 Cii22 Ci3z Crzz Gz Cinz
C22 Cr33 Co223 Cp213 Co212
Cs333 C3323 C3313 Ca3nz
Cr23 Caz13 Cosn2
Ciz13 Ciznz

Cia2 -

(13)

Linear elastic solids with symmetry

As mentioned previously, the symmetry of an elastic solid is characterized by the set of
orthogonal tensors Apg such that (7) holds. Substituting (8) into (7), we find
PoV = % CaBmNEABEMN = 71— CaBMNE ABE'MN - (14)
Using (3), (14) can be written as
CaBMNAAPABQAMRANSE PQE'Rs = CABMNE ABE'MN - (15)
Switching dummy indices, (15) becomes
(CaBmN — CprsAPAAQBARMASN)E ABE'MN =0 . (16)

Since (16) must hold for all E’sp and since the quantity in parenthesis in (16) is independent of

E’ A, We may conclude that

CaBmN = CporsAPAAQBARMASN (17)

for all orthogonal Apg which lie in the set which characterizes the symmetry of the material.

Isotropic linear elastic solids

If the material is isotropic, then equation (17) must hold for all orthogonal Apg. Hence,
Capmn in an isotropic tensor which from (12) is symmetric in the first two indices. From the

analysis given in the Appendix to Section 2 of Part III, we can represent CapgpN as

CaBMN = AOABOMN + H(SAMOBN + SANOBM) - (18)
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Eulerian strain

In the linear theory, there is no distinction between Lagrangian and Eulerian strain as is

clear from the expression
Eap = Saibgjeij + O(e?) .

Substituting this into (8), we may write

Pol = %— (CaBMNBAiSBOMIONDE;EwW + O(E?) - (19)
Now define

so that (19) becomes

PoV = -%— Cijis € e + O(e?) . (21)
If the material is isotropic, then from (18)

Cijir = A;jOks + 1(8ikdjr + O3 Sj1) - (22)

We will now consider materials with various symmetries and analyze the effect of the different

symmetries on Capmn.

Case I(a) - Symmetry with respect to the X;-X; plane

Consider a homogeneous elastic solid which in the reference configuration has material
symmetry only with respect to the X;—X, plane. For a material with such a symmetry, the
mechanical behavior in the X3 direction is the same as that in the —X3 direction (dentoed by X'3
in Figure 1). The coordinate transformation characterizing this particular type of symmetry is

represented schematically in Figure 1 and can be expressed algebraically as
X=X, X=X2, X3=-X3,

for which Apq is given by

[ )

[APQ] = é (15 , (23)
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Thus, a coordinate transformation which reverses the direction of the X3 axis does not alter the
strain energy function. We will show that the number of material constants needed to describe

the behavior of a material with the above symmetry is reduced from 21 to 13.

For the symmetry under consideration, equation (17) must hold for the value of Apqg given

in (23), but necessarily for other choices of Apg. Substituting (23) into (17) gives the relation-

ships
Ciii=Cinr Cniz=Cn2z2 Cnz=Cuss Crzz=-Cizs
Ciiz=-Cuns Ci112=Ciiiz  Co22=Cpr Cr233=Cp33
C2223 =—C23 C2213=—C2213 Cp212=Cp12 C3333=Cs333
C3323 = —C3323 C3313 =—-C3313 C3312=C3312 Ca323=C1323
Ca313=C2313 Ca312=—-C2312 C1313=Ci313 Ci312=—Ci312
Ci212=Ci212

which implies that

0=Cy123=Ci113=C223 = C2213 = C3323 = C3313 = C1312=Cp312 -

The remaining material constants from the set (13) are

Ciinn Cri22 Crizz 0 0 Cin

Ca222 Co233 0 0 Can2
Cs333 0 0 Cs312

Ca323 Co313 0
Ci313 0

Ci212 -

(24)

The material properties of an elastic solid with material symmetry with respect to the X; — X,

plane are characterized by the 13 constants in (24).

Case I(b) - Symmetry with respect to the X,—X; plane

Consider now a solid that has material symmetry with respect to the X,—X3 plane. For such
a material, the mechanical behavior in the X; direction is the same as the corresponding
behavior in the —X; direction (denoted by X; in Figure 2). The coordinate transformation for

which (17) holds, represented schematically in Figure 2, is given by
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X ==X"1, X=X, X3=X"3 . (25)
Since the material has symmetry with respect to the X,—Xj3 plane, a coordinate transformation

which reverses the direction of the X; axis (such as that in (25)) will not alter the strain energy

function.

Case II - Orthotropy

A material which is symmetric with respect to two orthogonal planes is called orthotropic.
Consider a homogenous elastic solid which has the material symmetry properties discussed in
I(a) as well as the symmetry properties discussed in I(b) (i.e. a material which is symmetric with
respect to both the X;—X; plane and the X;-X3 plane). We will show that the number of
material constants needed to describe the mechanical behavior of a material with the above sym-

metries is 9. For the coordinate transformation given in equation (25), Ap is given by

[An =)

Substituting this choice for Apq into (17), we see that the 13 constants in (24) are related by

SO -
OSO—=O
—_—0 O

Cii1=Cir > Criiz=Cn2 » C1133=Cu3z » Ciiz=-Cuinz
Co2220=C2 , C33=C233 , Co212=-Co212

C3333=C3333 , C3312=—-C3312

C2323=Cr323 , Cp313=—Ca313

Ci313=Ci313 » C1212=Cp212

so that
0=Cj112=Ci12=C3312=Cp313 .

The remaining independent constants are

Citin Crizz Cri33 0 0 0
Cr2 Co233 0 0 0

Cr323 0 0

Ci313 0

Ci12 -

(26)
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The material properties of a linear elastic solid with material symmetry with respect to the
X;—X, plane and with respect to the X,—Xj3 plane are thus characterized by the 9 constants given
in (26). Notice that by comparing (17) and (26), one can see that a material with the two sym-
metries described above is also symmetric with respect to a third plane which is orthogonal with

respect to both the original planes, i.e. the X;—X; plane.

Case III - Transverse isotropy

A homogeneous orthotropic solid that also has material symmetry in every direction lying

in a certain plane (say, the X;—Xj; plane) is said to be transversely isotropic. For such a material,

a coordinate transformation which alters the X; and X, axes by an arbitrary rotation about the X3
axis will not alter the strain energy function. This property implies that equation (17) must hold

for a transformation of the type (also represented schematically in Figure 3)

X' =X cosa+X,sina
X'y ==X sina + X3 cos a 27

X'3=X3,

where the angle o is arbitrary. We will show that the number of material constants needed to
describe the mechanical behavior of a material with the above symmetry is 5. The components

of the orthogonal tensor Apq corresponding to (27) are

[A ] coso —sino 8 28
=|sino cosa :
i 0 0 1 S
Substituting (28) and (26), since the material is also orthotropic, into (17) gives the relationships

Cin=Cma, Cizz=Cnz, Ci313=Cu3

Cinz= ‘%‘(Cllll -Ci2) -

The remaining independent compenents are
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Cii11 Cri22 Cruzz 0 0 0
Ciinn Cris3 0 0 0
Cs333 0 0 0

C3iz 0 0 (29)
Cizi3 0

%(Cllll - C1122) -

The material properties of a linear elastic solid which is transversely isotropic are thus character-

ized by the five constants given in (29).

Case IV - Isotropic material

A homogeneous elastic solid which has material symmetry in the reference configuration
with respect to all directions is said to be isotropic. Thus, equation (17) will remain valid for any
proper orthogonal choice of Apy. We will now derive equation (18) using the symmetries which
characterize an isotropic material. We will thus show that only two material constants are

needed to describe the mechanical behavior of a linear elastic isotropic solid.

An isotropic material can be considered as a material transversely isotropic in three mutu-
ally orthogonal planes (such as the X;—Xj, X;—X3, and X,—X3 planes). Thus, a coordinate
transformation which alters the X, and X3 axes by an arbitrary rotation about the X; axis will not
alter the strain energy function (see Figure 4a). The same is true with respect to an arbitrary

rotation of the X and X3 axes about the X, axes (see Figure 4b).

Thus, equation (17) must remain valid under the transformations

X'1=X
X'y =X; cos ¢ + X3 sin d) (30)
X'3=-X,sin ¢+ X3cos ¢

and

X'1=X;cosB—X3sinf
X'y =X, (31
X'3=X3cos B+ X;sinf ,
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where ¢ and B are arbitrary angles, in addition to the transformation (27). For the coordinate

transformation in (30), Apq is given by
1 0 0
[APQ] =10 cos¢d —sin¢d (32)
0 sind cosd
and for the coordinate transformation in (31), Apq is given by
cosf3 0 sinf
g =| 0" 1 0| (33)
—sin3 0 cos B
From (17), (29), (32), and (33), we can show the relationships

Cn22=Cis3 » Ciii=Csszs

Ci212=Ci313= %—(Cm] -Ci22) -

The remaining independent constants are given by

Citr Cii22 Cr122 0 0 0
Cit1 Ci2 000
Ciii1 000
woo (34)
p 0
u b
where p = —é—(Cl 111 — Cy122). Letting A = C2,, equation (34) may be expressed as
A+2u A A 00 O
A+2u A 00 O
A+20 00 O
wo o0 (35)
p 0

[T

An equivalent way of writing (35) is given simply

CaBMN = A3ABOMN + M(8AMOBN + SANOBM) - (36)
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Notice that (36) is the same as equation (18) obtained previously.



Fig. 4a

Fig. 3

Fig. 4b
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Appendix L: Some Results from Linear Algebra

The object of this appendix is to introduce the concept of a tensor in a form which is espe-
cially useful in continuum mechanics. Thus, after a rapid review and summary of basic results
from linear algebra, a tensor is regarded as a linear transformation. Many aspects of the algebra
and the calculus of tensors are subsequently discussed in coordinate-free form and frequently are

represented with reference to rectangular Cartesian basis vectors.

1. Sets.

We use the symbol X to represent a set, class, collection or family which contains elements

or objects X1,X,.... We write this as

X = {X1,X2,...}- (1.1)
The element x is a member of X, or belongs to X, or is in X, and this is denoted by

x € X. (1.2)

Let X and Y be two sets. The set X is a subset of Y if every x in X is also in Y. This rela-

tion is designated by

X c Y. (1.3)

Also Y is said to include or contain X, and we write Y © X. The empty set is contained in every

set and is designated by @. If

XcY and Y c X, (1.4)

then the set Y and X are said to coincide or be equal and we write

Y = X. (1.5)
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If X is a subset of Y but without X being equal to Y, i.e., X ¢ Y, then X is a proper subset
of Y and we write!
XcY,YoX (1.6)

It should be clear that X — Y means that (i) if x € X, then x € Y and that (ii) there existsay €
Y such thaty € X.

The union of two sets X and Y comprises all the elements of the two sets and is denoted by

XuY. (1.7)
The intersection of two sets consists only of those elements which belong to both X and Y and is
denoted by

X X (1.8)

The Cartesian product of two sets X and Y is the set

XxY ={xy :xeX, yeVY} (1.9)

of ordered pairs. For example, if X = {x;,xp,x3} and Y = {ypyz}, then X x Y =
{(X1Y D (X1,Y2):(X2:Y 1)s(X2,¥2),(X3,51),(X3,¥2) } -

For completeness, we introduce now the following definition of a function: A function f
from the set X to the set Y is a rule which assigns to every element of X a unique element of Y.

It is often displayed as

f:X>Y , xpby. (1.10)

I' Our use of the symbols < and c is analogous to the use of the symbols < and < to denote weak and strict ine-
qualities.
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The first of (1.10) indicates that the set X is transformed into Y, while the second of (1.10) indi-
cates that the element x goes to the element y. The function f, or the rule defined by (1.10),, is
sometimes called an operation or a transformation or a mapping. This definition of a function

rules out multivalued functions.
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2. Vector spaces.
Consider a set V of arbitrary elements u,v,w,...,etc., and admit the following two operations

labeled as (1) and (2):

(1) Let there exist an operation, denoted by "+", which to every pair u,v assigns a unique

element u + v in V and which has the properties:

(A})) u+v=v+u (commutative property).
(Ay) u+(v+w)=(u +v)+w (associative property).

(A3) There exists a zero vector o such that

(A4) For every vector v there is a corresponding negative vector (—v)

such that
v + (-v) = o.

It is customary to write v+ (-w) = v - w.
(2) Let there exist another operation, indicated by placing in juxtaposition an element of V

and a real number o , which to every element v assigns a unique element awv in V and which has

the following properties:

(Sl) lv = v.
(S2) a(Bv) = (ap)v (associative property).
(S3) (a+PB)v = av + Pv  (distributive property for scalar addition).

(S4) o(v+w) = av + aw  (distributive property for vector addition).
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We then say that V is a vector space over the field of real numbers and that u,v,w,... are
vectors in V. The first operation defined under (1) above is callled vector addition with elements
u + v called the sum of u and v. The second operation defined under (2) is called multiplication

of vectors by a real number.

All the usual algebraic results can be derived from the above axioms. For example, a vec-

tor equation of the form au = o has the solutiono. = O oru = o.

Vector subspaces. A subset U of a vector space V is a subspace of V if and only if U is
itself a vector space (under the same operations that are defined for V). Since every vector space
must contain the zero vector, only nonempty subsets of V can be subspaces. It can be shown that
a nonempty U of V is a subspace of V if and only if for every u and v belonging to U and for

every real number o, the vectors u + v and awv also belong to U.
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3. n-Dimensional vector spaces.

Let v},v2,..,Vp be any p vectors in a vector space V, p being some integer. The sum 2 Q; Vi
{=

is called a linear combination of the p vectors v; with coefficients o.; as real numbers. These vec-

tors are said to form a linearly independent set of order p if the only coefficients that satisfy the

equation

V] + Ogvy + " + OpVp = 0 3.1)
are o = Oy = 03 = -+ = Op = 0. A linearly dependent set is one which is not linearly
independent.

Note that every subset of vectors containing the zero vector is linearly dependent.

apvy + ogvp + o 4+ 10 + opv, = 0.

Consider the set of all systems of linearly independent vectors in the vector space V. There
are two possibilities: Either (1) there exist linearly independent systems of arbitrarily large order
p; then the vector space is said to be an infinite-dimensional space, or (2) the order of the linearly
independent sytstem is bounded. In the second case, there exists an integer n such that the order
p < n and there exist linearly independent systems of order n but not of n + 1. The vector space
V is said to be a finite-dimensional vector space. The number n is termed the dimension of the
vector space and we shall use 9/ to designate finite n-dimensional vector space; and henceforth
in this Appendix we shall be concerned with finite dimensional vector spaces only. Let
{g1,82,...8n} be any such system of order n in a finite dimensional vector space 7" ; it will be

called a basis of /. Thus, we have the following definition:
A basis in a vector space V™ is any linearly independent set of n vectors.

Let v be any vector in ™. The set of n + 1 vectors {v,g1,82,...8n} 1S necessarily linearly

dependent, so there exists n + 1 numbers A,01,0,..,0, not all zero such that
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AV + o€ + 08y +  + Opgy = O. (3.2)

Ifv = o, then oig; = 0, (no sum on i), and hence o; = 0. Forv # o, the number A must
be different from zero, for otherwise the system g; (i = 1,2,..,n) will not be linearly independent.

Equation (3.2) can, therefore, be solved for v, and there exist numbers v!,vZ,...,v? such that

v =vig) + vig + - + vig, . (3.3)

Thus, the vector v is expressible as a linear combination of the g; . This combination is unique;
for otherwise, there would exist another, and their difference would constitute a linear combina-
tion of the g; equal to the null vector o and with coefficients not all zero. The numbers
(v1,v2,..,v0) are called the components of v with respect to the basis {g,82,..8n} - It is con-

venient to replace (3.3) by the shorter notation

v = vkg (3.4)

in which the summation convention is used. Whenever an index appears twice in the same term,
a summation is implied over all terms by letting that index assume all its possible values, unless
the contrary is stated. Normally the convention applies to an index which appears once as a sub-
script and once as a superscript; but, as will become apparent later, in a special case it will
suffice to adopt the convention for repeated subscripts. It is convenient to recall here a theorem
the proof of which can be easily found in a book of linear algebra.?2 A statement of the theorem

is as follows:

For a set of vectors to constitute a basis in 9/ it is necessary and sufficient that every vector
in 9" can be expressed in one, and only one, way as a linear combination of the vectors of that

set.

2 See a standard book on linear algebra.
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4. Euclidean vector spaces.

Consider a vector space of dimension n defined over the field of real numbers. Suppose
there is an operation, denoted by " - ", which to every pair of vectors u and v assigns a real

number, denoted by u - v, and which has the following properties:
) uv=v-u.
) u-(vtw) = u-v + u-w.
(I3) (om) v =u-(av) = o(u-v) .

I3) uwwu>0 and wu=0=>u=o0.

The above operation (known as a rule of composition) is called the dot product or the scalar pro-
duct or the inner product of two vectors. A vector space %" obeying the rules of composition

(I)) to (I4) is a real inner product space and is called a Euclidean vector space> £ .

The magnitude or the norm of the vector v is defined by

vl = (vv)* . (4.1)

If ||v]| = 1, the vector is said to be normalized. By (I3) ||v||2 is always positive if v =

o and it vanishes when v = o, so that its square root is real.
The norms of two vectors and the magnitude of their scalar product satisfy the Schwarz ine-

quality

3 This terminology stems from the fact that once a scalar product is admitted, all the standard theorems of
Euclid’s geometry can be established by an appeal to the properties of an inner product space.
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lu-v| < [lull {Iv]l. (4.2)

To prove this, consider the vector au + v where o is an arbitrary real number. Then,

l(oeu + v)||2 = a2||ull2 + 2au-v + [[v][Z .

The left-hand side of the last expression is positive or zero for all real o and this implies

(u-v)? < [lull2 JIv]]?,

which is equivalent to (4.2). In view of (4.2), we define the angle between two nonzero vectors

u and v by

_ _u-y
cos O = Wﬂ . (43)
where 0 < 0 < m.
Vectors u and v are said to be orthogonal if
u'v=1_0, (4.4)

A set of vectors in ‘E" is said to be orthonormal if all the vectors in the set are normalized
and mutually orthogonal. Let e; be a system of orthonormal basis in £ . It follows that e; must

satisfy the conditions

where 8y (i,k = 1,2,...,n) is the Kronecker delta defined by

s _Joifizk, "
e = (453

Every orthonormal set is necessarily linearly independent. An infinity of bases exist which are

orthonormal; and in this appendix a typical orthonormal basis will be denoted by e; . Any vector
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v in ‘£ when referred to the basis e;, can be expressed in the form
n
vV = 1; vie; . 4.7)

Then, by taking the scalar product of both sides of (4.7) with e, , we have

Vg =YV €& . (4.8)

The numbers vy are the components of v with respect to the orthonormal basis ey and the square

of the magnitude of v is

2 n
|[vl]2=v-v = Zivivi . (4.9)
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5. Points.

We denote points by boldface letters x, y, z, etc. Given any two points X and y , we associ-

ate with them a point difference y — x which is a vector v in £* and which we denote by

vV=y-X (5.1)
satisfying the following rules:
®P) y-x+x-2 = (-2 .
(P;) Given any point x and any vector v, there is a unique point y such
that y—x = v .

The point y determined in rule (P,) is denoted by

Yy =X+V=V+X. (5.2)

In view of (5.1) and (5.2), it is meaningful to speak of the difference of two points which is

a vector, and of the sum of a point and a vector , which is a point. In particular,

X-X =0 (5-3)

holds for every point x .

The distance between two points X,y is

Ix-yl = {x-y) x-y}". (5-4)
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The set of all points associated with a Euclidean vector space £" is called Euclidean Point

Space.4

4 Euclidean vector and point spaces are abstract concepts which at this point in our discussion are unrelated to or-
dinary vectors and points of elementary geometry. Geometrical representations of these abstract concepts will be
discussed in Section 6.
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6. Geometric space.

Consider the space of elementary geometry. This space is composed of elements P,Q,R,
called points. Choose O to be a reference point or origin. The directed line segments
OP, O_Q,... may be associated with points X,y,... of Euclidean point space (Section 5) and the
directed line segments P_Q, Qi{ may be associated with vectors w,v,... in Euclidean vector space

(Section 4). Thus we set

x=0P ,y=0Q , z=0R .. (6.1)

and

u

I
3
“<

Il
=
=)

I
=

(6.2)

The properties (A1)—(A4) of abstract vectors and the properties (Py),(P2) of points have their
immediate geometrical representation in our geometric space. Thus, the class of all line seg-
ments with the same direction and length as P_Q, called a geometrical vector or free vector,
represent vectors, and directed segments such as (51’, called position vectors, represent points.

For example, we have the properties

PO = QP , PO + QR = PR .

Next, the properties (S1)—(S4) have their geometric representation in our space of elemen-
tary geometry. Multiplication of a vector by a scalar corresponds to multiplication of a line ele-
ment PQ by a scalar o and is represented by a line element of length |a| |PQ/|, where |PQ]is
the length of P_Q in the same or opposite direction as P_Q according to whether a is positive or

negative.

The rules (I;)—(I4) of Section 4 have their representation in the geometrical space. Recal-

ling also (4.3), these rules are represented by the scalar product of two geometrical vectors as

PO - RS = |PQ||RS| cos 6 , (6.3)
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where 0 is the angle between PQ and RS. Thus, geometrical vectors give a geometrical
representation of a Euclidean point space with its associated Euclidean vector space. Geometri-
cal space has three dimensions.

Given a geometrical space, we select an origin O and a (constant) basis {f;} of the associ-
ated vector space. These are said to constitute a coordinate system consisting of origin and a
basis (O,f;) for our geometrical space. Any point x referred to the basis f; can be expressed in

terms of its components X; by the formula

xf; , (6.4)

e
Il
s

1

Ti

where now summation is over i = 1,2,3. The components X' are called rectilinear coordinates of
x. If (f) is identified with a constant orthonormal basis e;, then referred to e; the point x can be

represented as

X = ixiei (6'5)

i=1
and x; are called Cartesian rectilinear coordinates of x.

We may select a different basis g; (say) at each point x in our geometric space so that

g, = g;(x). This situation arises when we consider curvilinear coordinates in geometric space.
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7. Indicial notation.
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8. Linear transformation. Tensors.

A linear transformation or tensor T is an operation which assigns to each vector v in V"

another vector Tv in ™ such that?

T(v+w) = Tv + Tw , T(av) = aTv (8.1)

for all v,w in V0. Thus, we have T: ¥ — V™ .

We denote the set of all possible tensors which transform vectors in %" linearly into vec-

tors in ¥™ by L(%,9/™) and we define the} sums of two tensors and the scalar multiples of ten-

sors by

(T+S)v = Tv + Sv , (aT)v = a(Tv) . (8.2)

The transformations T + S and oT defined in (8.2) obey the rules (8.1), i.e., they are tensors.
Also the sums and scalar multiples defined in L(%/",%/™) obey the rules (A;)—(A4) and (S1)—(S4).
Hence the set of all tensors constitutes a vector space. The zero element in L(7/1,7), i.e., the
element which is to be substituted for o in rules (A3) and (Ay4) is the transformation which
assigns the zero vector to every vector. We call this transformation the zero tensor and denote it

by O. In other words, the zero tensor O is such that

Ov =0 (8.3)

for all vectors v.

The identity tensor can only be defined for transformations from %" to /". Thus, when the

dimension m = n, we define the identity or the unit tensor I by
Iv=yv (8.4)

5 This special definition is particularly useful in the present Appendix. A more general definition of a tensor is
given in Appendix C.
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for all vectors v in V™.

We associate with Euclidean vector spaces E" and £™ a vector space of dimensions nm
denoted by £" ® E™ called the tensor product space of £ and £™, and defined in the following
way: If a € #0 and b e £, thena ® b is an element of £" @ £™ such that

(a®b)yv = a(b-v) (8.5)

for all vectors v € Z™. It is seen that a ® b, which sometimes is denoted as ab, obeys the rules
(8.1) and hence is a tensor, i.e., it assigns to each vector v € Z™ the vector a(b-v) € £". Sums
and scalar multiples of such tensors can then be calculated by the rules laid down for tensors in
(8.2). Not all tensors generated in this way can be expressed as an element of space of the form

a ® b. The zero tensor in 2* ® " is defined by the tensor 0 ® o.

Consider now the tensor product space £" ® Z" of dimension n?. Let e; be an orthonormal

basis in Euclidean vector space Z°. Then,

e ® ey (8.6)

is a basis in 20 @ Z£". To prove this, suppose oy are a set of n> numbers such that

oe; ® e = 0 .

Then,

(aike; ® epe, = Oe, = o .

With the help of (8.5) this last equation becomes

oikeiOxr = Oirej = 0 .

Since e; is a basis in £ it follows that
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U.ik=0.

Hence e; ® ey are linearly independent and form a basis in £ @ Z". When u and v are vectors

in " so that
u=1ue , V=V,
then
uv = u @ v = uyjvie; @ e . (8.7)

Let T be a tensor in L(Z",Z") and let t; denote the components of the vector Te, with respect to

the basis e; in " so that

Te, = t; , tix = Tex- € . (8.8)

Associated with each tensor T in L(Z",Z") we have the ordered array of n? scalars tj which
combine by the rules (Aj)—(A4) and (S;)—(S4) for vector spaces. Hence, L(Z",E") is a vector
space of dimension n?. But, €; ® ey is a linear transformation in the space L(Z",£") and hence
also forms a basis in L(Z1,2") which is identical to £* @ £". Moreover, with the use of (8.8),

for any vector v € Z* we have

(T-te; ® e v = Tevy — tikeivg = 0 .
Hence, we conclude that
T = tje; @ e . (8.9)

The n? numbers ty in (8.9) are called the components (or Cartesian components) of T with

respect to the basis e; ® ey .

Similarly, we write

1= Sikei ® ey (810)
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so that
Iv=yv (8.11)

for all vectors v in 0. The tensor I with components & is the unit tensor in £" ® £" or

L(EMED).

The system of numbers tj in (8.8) is usually regarded as an array of numbers, a matrix,

having n rows and n columns and denoted by [ty] or {ti}.
Let T beatensorin 2" ® . The transpose of atensor T isa tensor TT defined by
w-Tv = v-TTw (8.12)

for all vectors v and w in 0. The transpose TT satisfies (8.1) and is a tensor, and the opera-

tion which associates TT with T is called transposition. From (8.12) it may be shown that

AT =T , (T+9T =TT + ST , (aDT = oT7, (8.13)

so that transposition is a linear operation. Further, it follows from (8.9) and (8.12) that

[tu] = ¢ Te, = e~ TTe; = [tad” ,
where [ty]T are components of the tensor TT.

A tensor T is said to be symmetric if

TT =T . (8.14)

Also, by (8.9) and (8.14) we have

tki = tik - (8.15)

Also, from (8.12) and (8.14) it follows that if T is symmetric, then

w-Tv = v-Tw (8.16)
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for every v,w in £ and conversely.

A tensor T is said to be skew or anti-symmetric (skew- symmetric) if

TT = -T
or
i = —ti -
Every tensor T in £ @ Z" can be written as
T=T+TA,
where

TS = L (T+T7) - (@97 , TA = 5 (T-TT) = «TAT .

(8.17)

(8.18)

(8.19)

(8.20)
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9. Multiplication of tensors.

Let T and S be two tensors in L(#/2,9"). The product TS of two tensors T and S is the

composition of T and S , i.e., TS defined by the requirement that

(TS)v = T(Sv) (9.1)

hold for all vectors v in ¥/0. It is seen that TS satisfies (8.1) and is a tensor in L(%",%"). The

following rules may be established

(M) (TSR = T(SR) ,
M) T(R+S) = TR + TS,
(M3) (R+S)T = RT+ST ,
My oTS) = (aT)S = T(aS) ,
Ms) IT=TI=T,

where T,S,R are tensors in L(74,7).

For tensors T,S in L(E",2") it follows from (6.9) and (8.1) that

(TS)vV = T(SmkVk€m) = timSmkVkei

for all vectors v € " so that

TS = timSmkei & ek 9.2)

and timSmi are the components of TS with respect to the basis ¢; ® e;. If {ty} and {sy} are

matrix representations of the tensors T and S, respectively, then

{tu} {sic} = {timSmk} - 9.3)
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Note that
(TS)T = STTT . 9.4

The commutative law is not, in general, satisfied, i.e., TS is not the same as ST.

The truth of the following formulae can be readily verified:

@a®@bl=b®a,
T@a®b)=Ta®b,

9.5)
a® (T™) = (a®b)T ,

@A@a®b)(c®d) =(b-c)a®d.

The tensor T is invertible if, for every choice of w, the equation w = Tv can be solved
uniquely for the vector v. If T is invertible, then v is unique and we write v = T-'w. The
transformation T~! obeys the rules (8.1) and is a tensor called the inverse of T. If the inverse

T-! exists, then

(TT--Dw =0 , (T-'T-)v = o

for every choice of w and every choice of v so that

TT-!=TI!T=1, (T-)!=T. ‘ (9.6)

If S and T are invertible tensors in L(%/?,%") and if w = (TS)v, it follows that

Sv =Tlw , v=SITlw.

Hence, the product TS is invertible and

(TS)! = S-IT-1 . (9.7)
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If the only solution of the equation Tv = o is v = o, then T is nonsingular; otherwise it
is singular. If T is invertible, then T is nonsingular. It can be shown that a tensor T is invertible

or nonsingular if and only if det T # 0.

A tensor Q is orthogonal if it is invertible and if the inverse coincides with its transpose,
ie.,
Q'=QT or QQ"T=Q™Q =1. 9-8)

A tensor Q is orthogonal if and only if it preserves inner products in the sense that

(Qu) - (Qv) =u-v 9.9)
for every vector w,v in E™.

The tensor T is positive semidefinite if it is symmetric and if v - Tv > o for all vectors v in

0, If v-Tv > o whenv # o, then T is positive definite.
An operation tr which assigns to each tensor Tin E™ ® " a number tr T is a trace if
tr(S+T) =tr S+ tr T , (@l =a tr T, (9.10)

tra@b=a-b, (9.11)
for all vectors a,b in E" and all scalars a. The tr operation is a linear function and the follow-
ing consequences are clear:

tr T = tge; e = ;5 . (9.12)

Also,

tr TT=tr T , tr(TS) = tr(ST) ,
(9.13)
trI=n , rt TS=a¢T , tr TA=0,
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where n in (9.12); is the dimension of the space.

If one defines the inner product of two tensors T,S to be the number

T-S = t(TST) , (9.14)

then the rules (I;)—(Is) are satisfied. Hence with tr(STT) as the inner product, the space of all

tensors is an inner product space. We define the magnitude of T as

IT| = Ver(TTT) . (9.15)
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10. Change of basis.

Let ¢; and € be two arbitrary orthonormal bases in ". Each vector in one basis may be

expressed in terms of those of the other basis by a nonsingular transformation. Thus

e = Ae; = age ,

(10.1)
e = XEI = Eki_ék . K = Al ,
where
& Ae; = S = € Ag ,
(10.2)
A= €6 =ax , A=AT.
Hence, A~! = AT and A is orthogonal.
If v is an arbitary vector and
vV = vie; = Vi€ , (10.3)
then the components of v in the two bases e; and €; are related by the equations
Vi = vk, Vi = ikVk - (10.4)
Also
VOV = ViV = VYo, UtV o= U= Y, (10.5)

and the scalar product has the same form in terms of the components u;,v; as it has in terms of

the components u;,v; and is called a scalar invariant.

Again, if T is an arbitrary tensor in £" ® " and

T = tie; ® ex = Tixe; @ e , (10.6)
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then the components of T in the two bases e; and €; are related by

Tk = andskts > tik = Birdkshrs - (10.7)

If T and S are two tensors in £* ® E" and

S = sike; ® ex = Sy @ e ,

then

T S = tiSir = GirSir »
(10.8)
T-T = tyty = -flrt—lr

are scalar invariant forms.
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11. Point, vector and tensor functions.

The distance between two points X,y is defined in (6.4). The distance vanishes if and only
if x = y. This idea of distance can be used to define limits, convergence, continuity, etc. For
example, we say that

limx, = x if lim||x,—x]| =0 . (11.1)
n—oo n—oo

Suppose z(t) is a function of a real variable t called a point function. The derivative z(t),

if it exists, on an open subset of the real numbers is defined by

oy dz _ i Z(GHAL) —Z(t
i) = G = i HereRo2l0. 112

Such a derivative is a vector-valued function.

In a similar way we may define limits, derivatives, etc., of vector- and tensor-valued func-
tions v,T of t using the appropriate definitions (1.2) and (9.15) for distance. The derivative of a
vector-valued function of t is a vector function and the derivative of a tensor-valued function is a
tensor function. The usual rules of differential calculus are easily extended so as to apply to
point, vector or tensor functions. For example, if T = T(t) and S= S(t) are tensors, then

TS = TS + TS , (11.3)

where, of course, the correct order must be maintained for the tensors.

If Q = Q(t) is an orthogonal tensor function, then from (9.8) and (11.3),

QQT + QQT = O . (11.4)

Since QT = QT it follows that

Q=QQT=-QQ" (11.5)
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is a skew tensor.

If ¢(x) is a scalar function of x defined on some open region U of Euclidean point space,

then ¢ is differentiable on U if there is a vector field w(x) on U such that

lim | (b(X) - ¢(0X) i W(OX) i (X — OX) | =0 (1 16)

X—>oX [ x—oX ||

for every x inU. If this is so, w is unique. We call it the gradient of ¢ and write

w = grad §(x) = 22 . (11.7)

Alternatively, the gradient of ¢(x) may be defined by means of

lim ¢(X+ﬁ“g‘¢(") = a% ¢(X+Bu)4ﬁ=0 =X u=w-u (11.8)

B—0

for all vectors u € EP. It may be shown that this definition of gradient is equivalent to that
given in (11.6).
Sometimes we use the symbol V to denote the gradient operator:

v=£ =erﬂ£(—r (11.9)

if x = x,e, and e, is an orthonormal basis. From (11.6) it follows that

w = grad o(x) = L& = v = eig% . (11.10)

If v(x) is a vector function of points x in some open region U of Euclidean space, then
v(x) is said to be a vector field. The gradient of a vector field v(x) is a tensor field T(x)

defined by
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I
V) = V() — T(x) (o _
o =T - e Sty

for every ox in U. We write this as

T = grad v(x) = % . (11.12)

If v = vie;, then it follows from (11.12) that

| I —g—:—iei ® e (11.13)

ov; : .
so that —5)& are the components of the grad v with respect to the orthonormal basis e;. It can

be shown that

{grad v(x)}Te = grad{cv(x)} (11.14)

for every constant vector ¢. Equation (11.14) could be taken as the defining equation for grad
v(x).

The divergence of the vector field v(x) is a scalar field defined by

div v(x) = tr{grad v(x)} = V-V = ¢ 0% = %"x—? ; (11.15)

The divergence of a tensor field T(x) is the vector field div T(x) for which

¢ - div T(x) = div{TT(x)c} (11.16)

for every constant vector ¢. When

T = tje; ® ¢ , (11.17)

it follows that
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i L 11.18
le T(X) 6)—(j—e1 : ( . )

If 2 is a bounded region whose boundary &2 is sufficiently well-behaved, then by applica-

tion of the divergence theorem (Green’s theorem) to a vector v and a tensor T we have

I div v(x) dv(x) = I v(x) - n(x) da(x) , (11.19)
P oP

div T(x) dv(x) = T(x)n(x) da(x) , (11.20)
J J
P OP

where n is the outward unit normal to 0%, the integrations are over the volume © and the boun-
dary surface 02 and dv and da represent elements of volume and area, respectively. In com-

ponent form, (11.19) and (11.20) read:

.[ Vii dv = J. Vi 0§ da , (11.21)
4 oP

j tijdv = I tijn;da . (11.22)
P 0P
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12. Vector product. Axial vectors. The curl operator.

Consider a Euclidean vector space > of three dimensions. If w,v,w are any vectors in e,

the vector product of u and v is a vector in £3 denoted by u x v and defined by the properties:

(V) w-(uxv) = w(vxw) = v{(wxu) and is a scalar denoted by

[uvw] and called the scalar triple product ,

(V3) uxv=-vxu,
fl
(V3) lluxv] = Jluv]sin®,

where 0 is defined in (4.3). From (V;) and (V3), it follows that

uxu=0 , wxv)=0 , v(uxv) =0 (12.1)

so that u x v is orthogonal to both u and v. It can be shown that three nonzero vectors u,v,w

are linearly independent if and only if their scalar triple product [u,v,w] = w(vxw) = (uxv)w.

The following properties may be deduced from the definitions:

(am) x v = ouxv) = ux(av) ,
ux (VW) =uxv+uxw ,

UXWHVXW, (12.2)

(u+v) x w

ux (vxw) = viuw)-wuv) = (vOw-w®vu,

[u+x,v,w] = [uvw] + [xvw] .

The above definition of vector product does not restrict e; to be either right-handed or left-

handed basis.
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Let ej,e,e; be an orthonormal system. Then, in view of (V3) and (12.1),

€ X€ = te; . (123)

A right-handed orthonormal sytem is one for which

e Xe = €3 (124)
and a left-handed orthonormal system corresponds to the choice of the - sign in (12.3). For a
right-handed orthonormal system it follows that

[ejezes] = 1 , eixe = ejex , ek = [eiejex] , (12.5)

where the components e;j are known as the permutation symbol or the components of the alter-

nating tensor. Also, for any two vectors

u = ue ., v=vjej,
(12.6)
uxyv = eijkuivjek .
Let TA be a skew tensor in £ so that

TA = tye; ® e = %tik[ei Qe —e el . (12.7)
Hence, if u is an arbitrary vector in £

TAu = -17 ti[ej(wey) — ex(uey)] = -21— u x [tike; x ex] , (12.8)
if we use (12.2)4. Hence

TAu = tAxu , (12.9)

where the vector
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th = %tkieixek ;

Let e; be a right-handed orthonormal basis. Then, referred to e;, TA reads

TA = tije; ® e

and the axial vector tA with components t* assumes the form

1
th = tieijjkex = th ey .

- 4
Alternatively
i = ekt -
If
A _ OV _(OVyT
T = &' (ﬁ') ’

the corresponding axial vector tA is called the cur/ of v and written as

tA = curlv .

In a right-handed orthonormal system

By
curl v = e —&l e -
1

(12.10)

(12.11)

(12.12)

(12.13)

(12.14)

(12.15)

(12.16)
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